0000000000224049

AUTHOR

Zsuzsanna Lipt��k

On Combinatorial Generation of Prefix Normal Words

A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. This class of words is important in the context of binary jumbled pattern matching. In this paper we present an efficient algorithm for exhaustively listing the prefix normal words with a fixed length. The algorithm is based on the fact that the language of prefix normal words is a bubble language, a class of binary languages with the property that, for any word w in the language, exchanging the first occurrence of 01 by 10 in w results in another word in the language. We prove that each prefix normal word is produced in O(n) amortized time, and conjecture, based on expe…

research product

Normal, Abby Normal, Prefix Normal

A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. This class of words is important in the context of binary jumbled pattern matching. In this paper we present results about the number $pnw(n)$ of prefix normal words of length $n$, showing that $pnw(n) =\Omega\left(2^{n - c\sqrt{n\ln n}}\right)$ for some $c$ and $pnw(n) = O \left(\frac{2^n (\ln n)^2}{n}\right)$. We introduce efficient algorithms for testing the prefix normal property and a "mechanical algorithm" for computing prefix normal forms. We also include games which can be played with prefix normal words. In these games Alice wishes to stay normal but Bob wants t…

research product