0000000000225055
AUTHOR
Tijani Gharbi
Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube.
The behavior of confined anticancer carboplatin (CPT) molecules in a single (10, 10) boron nitride nanotube (BNNT) was studied by means of molecular dynamics simulations. Our study revealed a very large storage capacity of BNNT. Analysis of the energy profiles depending on the number of confined molecules, and on their spatial organization allowed us to quantify the ability of BNNT to vectorize CPT. Indeed, BNNT despite its small radius presented a large inner volume that favored stable encapsulation of multiple active anticancer molecules. Moreover, in our molecular dynamics simulations, the empty BNNT and the BNNT filled with CPT diffused spontaneously to the cell membrane and were able t…
Carbon nanotubes as gene carriers: Focus on internalization pathways related to functionalization and properties
Abstract Carbon nanotubes represent promising transporters for delivery of DNA and other biomolecules into living cells. Various methods of CNTs surface functionalization have been developed. These are essential to improve CNTs dispersibility and permit their interactions with biological structures that broaden their use in advanced biomedical applications. The present review discusses the different single walled carbon nanotubes and multiwalled carbon nanotubes functionalization methods, leading to the formation of optimized and functionalized-CNT complexes with DNA. F-CNTs are recognized as efficient and promising gene carriers. Emphasis is then placed on the processes used by f-CNTs/DNA …
Electrosynthesis of Poly(alanine)-Like Peptides in Concentrated Alanine Based Electrolytes, Characterization Coupled to DFT Study and Application to pH Proton Receptor
The anodic oxidation of concentrated l-alanine on smooth electrodes such as platinum and glassy carbon electrodes was studied. Contrary to the previous studies performed up to now with diluted l-alanine, the electrochemical process generated here results in a completely different situation. The oxidation on smooth platinum was carried out by electrochemical quartz crystal microbalance (EQCM) coupled to cyclic voltammetry technique. The effects of concentration, scan rate, and pH (zwitterion at pH = 6 and alkaline media at pH = 13) on potential values were examined. Glassy carbon and smooth gold electrodes showed the same behavior as on smooth platinum electrode. Spectroscopic analysis such …
Direct Writing on Copper Ion Doped Silica Films by Electrogeneration of Metallic Microstructures
International audience; A facile and rapid localized electrochemical reduction of colloid copper particles is proposed using the scanning electrochemical,microscope (SECM), technique. In this purpose, thin films of composite silica :glass containing copper salts were prepared by the sol-gel method via the dip coating technique. Acid-catalyzed tetraethylorthosilane (TEOS) solutions charged with copper nitrate were used as precursors. This one-pot experiment can be performed in mild conditions. The localized generation of copper metallic nanostructures on silica film has been performed by electroreduction of methyl viologen on an ultramicroelectrode (UME). The UME generates reducing species, …
Experimental and theoretical studies on electropolymerization of polar amino acids on platinum electrode
International audience; The anodic oxidation of polar amino acids (L-serine, L-threonine, L-asparagine, and L-glutamine) in aqueous electrolyte on smooth platinum electrode was carried out by cyclic voltammetry coupled to electrochemical quartz crystal microbalance (EQCM). pH (zwitterion, acidic and alkaline) effects on their electrochemical behavior were examined. The maximum current values are measured for zwitterion species. In addition, the current increases with increasing of concentration and scan rate, and decreases with increasing pH. The resulting passivation was studied by spectroscopic analysis such as attenuated total reflection FT infrared spectroscopy (ATR-FTIR), X-ray photoel…
Coupling tumor necrosis factor‐related apoptosis‐inducing ligand to iron oxide nanoparticles increases its apoptotic activity on HCT116 and HepG2 malignant cells: effect of magnetic core size
International audience; Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been considered as a potential anticancer agent owing to its selectivity for malignant cells. However, its clinical use remains limited because of its poor efficacy. Attempts to increase its antitumor activity include, among others, its functionalization by nanoparticles (NPs). In the present study, TRAIL was grafted onto magnetic spinel iron oxide NPs of defined core size, 10 and 100 nm on average, to see whether the size of the resulting nanovectors, NV10 and NV100, respectively, might affect TRAIL efficacy and selectivity. Apoptosis induced by NV10 and NV100 was higher than by TRAIL alone in both …
Electrochemical deposition of a luminescent alkoxysilyl-based fluorenone film exhibiting halide sensitivity
International audience
TRAIL acts synergistically with iron oxide nanocluster-mediated magneto- and photothermia
International audience; Targeting TRAIL (Tumor necrosis factor (TNF)-Related Apoptosis-Inducing Ligand) receptors for cancer therapy remains challenging due to tumor cell resistance and poor preparations of TRAIL or its derivatives. Herein, to optimize its therapeutic use, TRAIL was grafted onto iron oxide nanoclusters (NCs) with the aim of increasing its pro-apoptotic potential through nanoparticle-mediated magnetic hyperthermia (MHT) or photothermia (PT). Methods: The nanovector, NC@TRAIL, was characterized in terms of size, grafting efficiency, and potential for MHT and PT. The therapeutic function was assessed on a TRAIL-resistant breast cancer cell line, MDA-MB-231, wild type (WT) or T…
Electrogeneration of Diiodoaurate in Dimethylsulfoxide on Gold Substrate and Localized Patterning
International audience; A localized etching of gold surface by scanning electrochemical microscope technique is presented where a dimethylsulfoxide-based electrolyte charged with iodine is used. The electrogenerated triiodide ion at the platinum ultramicroelectrode tip (feedback mode) acts as an oxidant for gold surface. The effects of electrode diameter and the bias time have been investigated. The approach curve method was used to hold the electrode tip close to the gold surface. A scanning electron microscope is used to observe the etched gold surfaces where disk-shaped dots are generated. The diameter of these holes depends directly on the Pt electrode diameter and the bias time.
Synthesis of polymer materials for use as cell culture substrates
International audience; Up to today, several techniques have been used to maintain cells in culture for studying many aspects of cell biology and physiology. More often, cell culture is dependent on proper anchorage of cells to the growth surface. Thus, poly-L-lysine, fibronectin or laminin are the most commonly used substrates. In this study, electrosynthesized biocompatible polymer films are proposed as an alternative to these standard substrates. The electrosynthesized polymers tested were polyethylenimine, polypropylenimme and polypyrrole. Then, the adhesion, proliferation and morphology of rat neuronal cell lines were investigated on these polymer substrates in an attempt to develop ne…
Theoretical use of boron nitride nanotubes as a perfect container for anticancer molecules
International audience; In recent years great interest has emerged in the development of nanocarriers for drug transport. One of themajor challenges is to obtain a drug delivery system able to control the drug release profile, transportabsorption and distribution, in the view of improving efficacy and safety. Herein, we present theoreticalresults based on density functional theory (DFT) to determine the best adsorption site for the anticancerifosfamide molecule in boron nitride nanotubes. For this functionalized system we determine thedependence of the adsorption energy on the displacement of molecules in the outer and inner boronnitride surfaces, together with their local morphological and…
TRAIL–NP hybrids for cancer therapy: a review
IF 7.367; International audience; Cancer is a worldwide health problem. It is now considered as a leading cause of morbidity and mortality in developed countries. In the last few decades, considerable progress has been made in anti-cancer therapies, allowing the cure of patients suffering from this disease, or at least helping to prolong their lives. Several cancers, such as those of the lung and pancreas, are still devastating in the absence of therapeutic options. In the early 90s, TRAIL (Tumor Necrosis Factor-related apoptosis-inducing ligand), a cytokine belonging to the TNF superfamily, attracted major interest in oncology owing to its selective anti-tumor properties. Clinical trials u…
Grafting TRAIL through Either Amino or Carboxylic Groups onto Maghemite Nanoparticles: Influence on Pro-Apoptotic Efficiency
International audience; Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF cytokine superfamily. TRAIL is able to induce apoptosis through engagement of its death receptors DR4 and DR5 in a wide variety of tumor cells while sparing vital normal cells. This makes it a promising agent for cancer therapy. Here, we present two different ways of covalently grafting TRAIL onto maghemite nanoparticles (NPs): (a) by using carboxylic acid groups of the protein to graft it onto maghemite NPs previously functionalized with amino groups, and (b) by using the amino functions of the protein to graft it onto NPs functionalized with carboxylic acid groups. The two …
Carbon nanotube – Protamine hybrid: Evaluation of DNA cell penetration
International audience; Carbon nanotubes (CNTs) represent a class of nanomaterials with important potential for biomedical and biotechnological applications. CNT based vectorization is an emerging approach to the transport of nucleic acid through cell membrane but limited by detachment of DNA and degradation process. To increase DNA internalization, it was proved that cationic functionalized CNT was essential. In such a way, protamine efficiently used in several transfection processes is a cationic protein which was never associated to CNT.We propose here a novel nanovector based on single-walled carbon nanotubes (SWCNT) functionalized by protamine. Our results based on qPCR methods clearly…
Nanovector formation by functionalization of TRAIL ligand on single-walled carbon nanotube: Experimental and theoretical evidences
Équipe 104 : Nanomatériaux; International audience; The synthesis and the characterization of a novel nanovector based on oxidized single-walled carbon nanotubes (SWCNT) functionalized with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via noncovalent 1-pyrenebutanoic acid N-hydrosuccinimid ester (PSE) is described. Experimental noncovalent functionalized SWCNT by PSE are compared to full DFT theoretical predictions. For this, several experimental techniques are gathered to prove the well functionalization of oxidized SWCNT by pi-pi stacking such as micro Raman and XPS spectroscopy analysis coupled to full-DFT calculations. Scanning transmission electron microscopy (STEM) …
Theoretical demonstration of the potentiality of boron nitride nanotubes to encapsulate anticancer molecule.
Anticancer drug transport is now becoming an important scientific challenge since it would allow localizing the drug release near the tumor cell, avoiding secondary medical effects. We present theoretical results, based on density functional theory and molecular dynamics simulations, which demonstrate the stability of functionalized single (10,10) boron nitride nanotubes (BNNTs) filled with anticancer molecule such as carboplatin (CPT). For this functionalized system we determine the dependence of the adsorption energy on the molecule displacement near the inner BNNTs surface, together with their local morphological and electrical changes and compare the values to the adsorption energy obta…