0000000000227312

AUTHOR

Emigdio Chávez Angel

One-Dimensional TiO2-B Crystals Synthesised by Hydrothermal Process and Their Antibacterial Behaviour on Escherichia coli

We have successfully synthesised one-dimensional single crystals of monoclinic phase titanium dioxide nanostructures (TiO2-B), prepared by a hydrothermal process. Morphological characterization was carried out by atomic force and scanning and transmission electron microscopy techniques. In order to study the crystalline structure, samples were calcined at 500°C in an air-filled chamber. X-ray diffraction results indicated that as-prepared samples presented diffraction patterns of hydrate hydrogen titanate and those calcined at 500°C exhibited the TiO2-B and anatase phases, confirmed by Raman spectroscopy. Scanning electron microscopy results showed that the one-dimensional nanostructures ha…

research product

Half-Heusler superlattices as model systems for nanostructured thermoelectrics

The efficiency of thermoelectric materials is directly related to the dimensionless figure of merit , therefore, one of the means to improve ZT is to reduce the thermal conductivity. Our research focuses on half-Heusler superlattices (SLs) and the relationship between the SL period and the thermal conductivity. The cross-plane thermal conductivity of DC-sputtered TiNiSn/HfNiSn SLs was measured by the 3 method at room temperature and a clear reduction of was achieved for all SL periods, in particular for periods smaller than 20 nm. Moreover, the thermal conductivities of TiNiSn and HfNiSn single films display reduced values compared to the literature data for bulk materials. Furthermore, we …

research product

Reduced thermal conductivity of TiNiSn/HfNiSn superlattices

Diminution of the thermal conductivity is a crucial aspect in thermoelectric research. We report a systematic and significant reduction of the cross-plane thermal conductivity in a model system consisting of DC sputtered TiNiSn and HfNiSn half-Heusler superlattices. The reduction of $\kappa$ is measured by the 3$\omega$ method and originates from phonon scattering at the internal interfaces. Heat transport in the superlattices is calculated based on Boltzmann transport theory, including a diffusive mismatch model for the phonons at the internal interfaces. Down to superlattice periodicity of 3 nm the phonon spectrum mismatch between the superlattice components quantitatively explains the re…

research product

Phonon Bridge Effect in Superlattices of Thermoelectric TiNiSn/HfNiSn With Controlled Interface Intermixing

© 2020 by the authors

research product