A Dual Role for Hyperbaric Oxygen in Stroke Neuroprotection: Preconditioning of the Brain and Stem Cells
Stroke continues to be an extremely prevalent disease and poses a great challenge in developing safe and effective therapeutic options. Hyperbaric oxygen therapy (HBOT) has demonstrated significant pre-clinical effectiveness for the treatment of acute ischemic stroke, and limited potential in treating chronic neurological deficits. Reported benefits include reductions in oxidative stress, inflammation, neural apoptosis, and improved physiological metrics such as edema and oxygen perfusion, all of which contribute to improved functional recovery. This pre-clinical evidence has failed to translate into an effective evidence-based therapy, however, due in large part to significant inconsistenc…
Healthy mitochondria for stroke cells.
Stroke is a debilitating disease that remains as a significant unmet need. Although our understanding of the disease pathology has advanced over the years, treatment options for stroke are limited. Recent studies have implicated the important role of healthy mitochondria in neuroprotection against stroke. Under the stroke pathological condition, transfer of healthy mitochondria is observed from astrocytes to ischemic neurons. However, without additional therapeutic intervention, such astrocyte-to-neuron transfer of mitochondria may not sufficiently afford a robust and stable therapeutic effect against the devastating primary insult and progressive neurodegeneration associated with stroke. W…
Hierarchical cross-scale analysis identifies parallel ventral striatal networks coding for dynamic and stabilized olfactory reward predictions
SUMMARYThe unbiased identification of brain circuits responsible for behavior and their local cellular computations is a challenge for neuroscience. We establish here a hierarchical cross-scale approach from behavioral modeling and fMRI in task-performing mice to cellular network dynamics to identify how reward predictions are represented in the forebrain upon olfactory conditioning. fMRI identified functional segregation in reward prediction and error computations among olfactory cortices and subcortical circuits. Among them, the olfactory tubercle contributed both to dynamic reward predictions and prediction error. In this region, cellular recordings revealed two parallel neuronal populat…
CHARACTERIZATION AND ENERGETIC METABOLISM ANALYSIS OF DIFFERENT POPULATIONS OF UMBILICAL CORD MESENCHYMAL STEM CELLS FOR THE TREATMENT OF STROKE
Stroke is a leading cause of death and disability worldwide. A direct consequence of oxygen and glucose deprivation during stroke is the dysfunction of mitochondria that impairs oxidative metabolism and contributes to oxidative stress, neuronal death and inflammation. Human umbilical cord (UC)-derived MSCs (UC-MSCs) are an attractive source for regenerative medicine purposes due to their self-renewal and multipotent differentiation potential, immunomodulatory and anti-inflammatory abilities. Notably, because UC is supplied from only three blood vessels, the UC-MSCs are physiologically adapted to survive in a relatively hypoxic and glucose poor environment leading to the hypothesis that thes…
Analisi di biomarcatori urinari e tissutali coinvolti nei meccanismi pro- o anti-fibrotici in pazienti con stenosi del giunto pielo-ureterale unilaterale congenita come ulteriore strumento nel management terapeutico.
Stenosi del giunto pielo-ureterale, biomarcatori urinari, fibrosi, funzione renale, matrice extracellulare.
Wharton’s Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro
Therapeutic options for end-stage organ failure are often limited to whole organ transplantation. The tolerance or rejection of the transplanted organ is driven by both early non-specific innate and specific adaptive responses. The use of mesenchymal stromal cells (MSCs) is considered a promising tool in regenerative medicine. Human umbilical cord (HUC) is an easily available source of MSCs, without relevant ethical issues. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs), showed consistent immunomodulatory features that may be useful to promote immune tolerance in the host after transplantation. Few data are available on the phenotype of WJ-MSCs in situ. We investigated the expression of i…
Mitochondrial targeting as a novel therapy for stroke
Stroke is a main cause of mortality and morbidity worldwide. Despite the increasing development of innovative treatments for stroke, most are unsuccessful in clinical trials. In recent years, an encouraging strategy for stroke therapy has been identified in stem cells transplantation. In particular, grafting cells and their secretion products are leading with functional recovery in stroke patients by promoting the growth and function of the neurovascular unit – a communication framework between neurons, their supply microvessels along with glial cells – underlying stroke pathology and recovery. Mitochondrial dysfunction has been recently recognized as a hallmark in ischemia/reperfusion neur…
Central and Peripheral Secondary Cell Death Processes after Transient Global Ischemia in Nonhuman Primate Cerebellum and Heart
Cerebral ischemia and its pathological sequelae are responsible for severe neurological deficits generally attributed to the neural death within the infarcted tissue and adjacent regions. Distal brain regions, and even peripheral organs, may be subject to more subtle consequences of the primary ischemic event which can initiate parallel disease processes and promote comorbid symptomology. In order to characterize the susceptibility of cerebellar brain regions and the heart to transient global ischemia (TGI) in nonhuman primates (NHP), brain and heart tissues were harvested 6 months post-TGI injury. Immunostaining analysis with unbiased stereology revealed significant cell death in lobule II…
May the force be with you: Transfer of healthy mitochondria from stem cells to stroke cells
Stroke is a major cause of death and disability in the United States and around the world with limited therapeutic option. Here, we discuss the critical role of mitochondria in stem cell-mediated rescue of stroke brain by highlighting the concept that deleting the mitochondria from stem cells abolishes the cells’ regenerative potency. The application of innovative approaches entailing generation of mitochondria-voided stem cells as well as pharmacological inhibition of mitochondrial function may elucidate the mechanism underlying transfer of healthy mitochondria to ischemic cells, thereby providing key insights in the pathology and treatment of stroke and other brain disorders plagued with…
Translating intracarotid artery transplantation of bone marrow-derived NCS-01 cells for ischemic stroke: Behavioral and histological readouts and mechanistic insights into stem cell therapy
Abstract The present study used in vitro and in vivo stroke models to demonstrate the safety, efficacy, and mechanism of action of adult human bone marrow‐derived NCS‐01 cells. Coculture with NCS‐01 cells protected primary rat cortical cells or human neural progenitor cells from oxygen glucose deprivation. Adult rats that were subjected to middle cerebral artery occlusion, transiently or permanently, and subsequently received intracarotid artery or intravenous transplants of NCS‐01 cells displayed dose‐dependent improvements in motor and neurological behaviors, and reductions in infarct area and peri‐infarct cell loss, much better than intravenous administration. The optimal dose was 7.5 × …
Advancing stem cells: New therapeutic strategies for treating central nervous system disorders
In this special issue, we explore new methods and knowledge to improve stem cell transplantation in diseases and conditions such as stroke, PD, and depression. Advancing the conventional idea regarding cell replacement in stem cell therapy, stem cells may also transfer healthy mitochondria to diseased ischemic neurons in stroke and improve the therapeutic time window of tissue plasminogen activator (tPA) in a conjunctive therapy for stroke, and human Wharton’s Jelly-derived mesenchymal stromal cells (hWJ-MSCs) may rely mainly on trophic factor secretion to induce neuroprotective effects. In addition, trophic factors such as neurotrophin-4/5 (NT-4/5) and glial cell line-derived neurotrophic …
Management of urinary incontinence in postmenopausal women: An EMAS clinical guide.
INTRODUCTION: The prevalence of urinary incontinence and of other lower urinary tract symptoms increases after the menopause and affects between 38 % and 55 % of women aged over 60 years. While urinary incontinence has a profound impact on quality of life, few affected women seek care. AIM: The aim of this clinical guide is to provide an evidence-based approach to the management of urinary incontinence in postmenopausal women. MATERIALS AND METHODS: Literature review and consensus of expert opinion. SUMMARY RECOMMENDATIONS: Healthcare professionals should consider urinary incontinence a clinical priority and develop appropriate diagnostic skills. They should be able to identify and manage a…
Current Perspectives on Adult Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Biological Features and Clinical Indications.
Extracellular vesicles (EVs) constitute one of the main mechanisms by which cells communicate with the surrounding tissue or at distance. Vesicle secretion is featured by most cell types, and adult mesenchymal stromal cells (MSCs) of different tissue origins have shown the ability to produce them. In recent years, several reports disclosed the molecular composition and suggested clinical indications for EVs derived from adult MSCs. The parental cells were already known for their roles in different disease settings in regulating inflammation, immune modulation, or transdifferentiation to promote cell repopulation. Interestingly, most reports also suggested that part of the properties of pare…
Energy Metabolism Analysis of Three Different Mesenchymal Stem Cell Populations of Umbilical Cord Under Normal and Pathologic Conditions
AbstractHuman umbilical cord mesenchymal stem cells (hUC-MSCs) are a pivotal source of therapeutically active cells for regenerative medicine due to their multipotent differentiation potential, immunomodulatory and anti-inflammatory proprieties, as well as logistical collection advantages without ethical concerns. However, it remains poorly understood whether MSCs from different compartments of the human umbilical cord are therapeutically superior than others. In this study, MSCs were isolated from Wharton’s jelly (WJ-MSCs), perivascular region (PV-MSCs) and cord lining (CL-MSCs) of hUC. These cells expressed the mesenchymal markers (CD90, CD73), stemness marker (OCT4), endothelial cell adh…
An update on intracerebral stem cell grafts.
Introduction: Primary neurological disorders are notoriously debilitating and deadly, and over the past four decades stem cell therapy has emerged as a promising treatment. Translation of stem cell therapies from the bench to the clinic requires a better understanding of delivery protocols, safety profile, and efficacy in each disease. Areas covered: In this review, benefits and risks of intracerebral stem cell transplantation are presented for consideration. Milestone discoveries in stem cell applications are reviewed to examine the efficacy and safety of intracerebral stem cell transplant therapy for disorders of the central nervous system and inform design of translatable protocols for c…
Wharton’s Jelly Mesenchymal Stromal Cells Support the Expansion of Cord Blood–derived CD34+Cells Mimicking a Hematopoietic Niche in a Direct Cell–cell Contact Culture System
Wharton’s jelly mesenchymal stromal cells (WJ-MSCs) have been recently exploited as a feeder layer in coculture systems to expand umbilical cord blood–hematopoietic stem/progenitor cells (UCB-HSPCs). Here, we investigated the role of WJ-MSCs in supporting ex vivo UCB-HSPC expansion either when cultured in direct contact (DC) with WJ-MSCs or separated by a transwell system or in the presence of WJ-MSC–conditioned medium. We found, in short-term culture, a greater degree of expansion of UCB-CD34+cells in a DC system (15.7 ± 4.1-fold increase) with respect to the other conditions. Moreover, in DC, we evidenced two different CD34+cell populations (one floating and one adherent to WJ-MSCs) with …
Current management of pelvic organ prolapse in aging women : EMAS clinical guide
Management of pelvic organ prolapse (POP) is a common and challenging task. Nowadays older women are more active than they were in the past, and the development of POP disrupts quality of life and impairs social and personal activities. The menopausal transition is a time of vulnerability, during which many women start experiencing symptoms and signs of POP. The role of hormonal changes or of hormonal therapies in influencing the development or progression of POP has been explored extensively. The management of POP requires considerable clinical skills. Correct diagnosis and characterization of the prolapse and an identification of the individual woman's most bothersome symptoms are the hal…