0000000000234391

AUTHOR

Hendrik Meer

Mechanism of electrical switching of ultra-thin CoO/Pt bilayers

We study current-induced switching of the N\'eel vector in CoO/Pt bilayers to understand the underlaying antiferromagnetic switching mechanism. Surprisingly, we find that for ultra-thin CoO/Pt bilayers electrical pulses along the same path can lead to an increase or decrease of the spin Hall magnetoresistance signal, depending on the current density of the pulse. By comparing the results of these electrical measurements to XMLD-PEEM imaging of the antiferromagnetic domain structure before and after the application of current pulses, we reveal the reorientation of the N\'eel vector in ultra-thin CoO(4 nm). This allows us to determine that even opposite resistance changes can result from a th…

research product

Direct imaging of current-induced antiferromagnetic switching revealing a pure thermomagnetoelastic switching mechanism in NiO

We unambiguously identify the origin of the current-induced magnetic switching of insulating antiferromagnet/heavy metal bilayers. Previously, different reorientations of the Neel order for the same current direction were reported for different device geometries and different switching mechanisms were proposed. Here, we combine concurrent electrical readout and optical imaging of the switching of antiferromagnetic domains with simulations of the current-induced temperature and strain gradients. By comparing the switching in specially engineered NiO/Pt device and pulsing geometries, we can rule out spin-orbit torque based mechanisms and identify a thermomagnetoelastic mechanism to dominate t…

research product

Direct Imaging of Current-Induced Antiferromagnetic Switching Revealing a Pure Thermomagnetoelastic Switching Mechanism in NiO.

We unravel the origin of current-induced magnetic switching of insulating antiferromagnet/heavy metal systems. We utilize concurrent transport and magneto-optical measurements to image the switching of antiferromagnetic domains in specially engineered devices of NiO/Pt bilayers. Different electrical pulsing and device geometries reveal different final states of the switching with respect to the current direction. We can explain these through simulations of the temperature induced strain and we identify the thermomagnetoelastic switching mechanism combined with thermal excitations as the origin, in which the final state is defined by the strain distributions and heat is required to switch th…

research product

Strain-induced Shape Anisotropy in Antiferromagnetic Structures

We demonstrate how shape dependent strain can be used to control antiferromagnetic order in NiO Pt thin films. For rectangular elements patterned along the easy and hard magnetocrystalline anisotropy axes of our film, we observe different domain structures and we identify magnetoelastic interactions that are distinct for different domain configurations. We reproduce the experimental observations by modeling the magnetoelastic interactions, considering spontaneous strain induced by the domain configuration, as well as elastic strain due to the substrate and the shape of the patterns. This allows us to demonstrate and explain how the variation of the aspect ratio of rectangular elements can b…

research product

Data for the article "Magnetic Sensitivity Distribution of Hall Devices in Antiferromagnetic Switching Experiments"

Data for the article "Magnetic Sensitivity Distribution of Hall Devices in Antiferromagnetic Switching Experiments" URL: https://link.aps.org/doi/10.1103/PhysRevApplied.16.064023 DOI: 10.1103/PhysRevApplied.16.064023

research product

Data for the article "Strain-induced shape anisotropy in antiferromagnetic structures"

Data for the article "Strain-induced shape anisotropy in antiferromagnetic structures" URL: https://link.aps.org/doi/10.1103/PhysRevB.106.094430 DOI: 10.1103/PhysRevB.106.094430

research product