0000000000236041

AUTHOR

Cesar V. Borlongan

showing 7 related works from this author

Healthy mitochondria for stroke cells.

2018

Stroke is a debilitating disease that remains as a significant unmet need. Although our understanding of the disease pathology has advanced over the years, treatment options for stroke are limited. Recent studies have implicated the important role of healthy mitochondria in neuroprotection against stroke. Under the stroke pathological condition, transfer of healthy mitochondria is observed from astrocytes to ischemic neurons. However, without additional therapeutic intervention, such astrocyte-to-neuron transfer of mitochondria may not sufficiently afford a robust and stable therapeutic effect against the devastating primary insult and progressive neurodegeneration associated with stroke. W…

lcsh:Diseases of the circulatory (Cardiovascular) systemAginglcsh:Medical technologyneuronsReview ArticleDiseaseMitochondrion010402 general chemistryBioinformatics01 natural sciencesNeuroprotectionstem cellsmedicineStrokePathological010405 organic chemistrybusiness.industryNeurosciencesGeneral Medicinemedicine.diseaseStem Cell Researchstrokeneuronendothelial cells0104 chemical sciencesReview articleBrain Disordersstem cellTransplantationmitochondriaStrokelcsh:R855-855.5lcsh:RC666-701AstrocytesNeurologicalendothelial cellStem cellAstrocytebusiness
researchProduct

Mitochondrial targeting as a novel therapy for stroke

2018

Stroke is a main cause of mortality and morbidity worldwide. Despite the increasing development of innovative treatments for stroke, most are unsuccessful in clinical trials. In recent years, an encouraging strategy for stroke therapy has been identified in stem cells transplantation. In particular, grafting cells and their secretion products are leading with functional recovery in stroke patients by promoting the growth and function of the neurovascular unit – a communication framework between neurons, their supply microvessels along with glial cells – underlying stroke pathology and recovery. Mitochondrial dysfunction has been recently recognized as a hallmark in ischemia/reperfusion neur…

0301 basic medicinelcsh:Diseases of the circulatory (Cardiovascular) systemAginglcsh:Medical technologyimpaired mitochondriavasculatureBioenergeticmedicine.medical_treatmentClinical Trials and Supportive ActivitiesIschemiaregenerative medicineReview ArticleBioenergeticsMitochondrionblood–brain barrierBioinformaticsstem cell therapycerebral ischemiaCell therapy03 medical and health sciences0302 clinical medicineClinical Researchmedicineneurovascular unitStrokeTransplantationbusiness.industryNeurosciencesGeneral MedicineStem-cell therapyblood-brain barrierStem Cell Researchmedicine.diseaseendothelial cellsBrain DisordersReview articleStrokeTransplantationtransfer of healthy mitochondria030104 developmental biologylcsh:R855-855.5lcsh:RC666-701endothelial cellStem cellbusiness030217 neurology & neurosurgeryBrain Circulation
researchProduct

Central and Peripheral Secondary Cell Death Processes after Transient Global Ischemia in Nonhuman Primate Cerebellum and Heart

2019

Cerebral ischemia and its pathological sequelae are responsible for severe neurological deficits generally attributed to the neural death within the infarcted tissue and adjacent regions. Distal brain regions, and even peripheral organs, may be subject to more subtle consequences of the primary ischemic event which can initiate parallel disease processes and promote comorbid symptomology. In order to characterize the susceptibility of cerebellar brain regions and the heart to transient global ischemia (TGI) in nonhuman primates (NHP), brain and heart tissues were harvested 6 months post-TGI injury. Immunostaining analysis with unbiased stereology revealed significant cell death in lobule II…

Cell deathInflammationPathologymedicine.medical_specialtyProgrammed cell deathCerebellumbusiness.industryPurkinje cellNeurodegenerationIschemiaInflammationStereologymedicine.diseaseSecondary injury03 medical and health sciences0302 clinical medicinemedicine.anatomical_structureApoptosis030220 oncology & carcinogenesisMedicineNeurodegenerationmedicine.symptombusiness030217 neurology & neurosurgeryImmunostaining
researchProduct

May the force be with you: Transfer of healthy mitochondria from stem cells to stroke cells

2018

Stroke is a major cause of death and disability in the United States and around the world with limited therapeutic option. Here, we discuss the critical role of mitochondria in stem cell-mediated rescue of stroke brain by highlighting the concept that deleting the mitochondria from stem cells abolishes the cells’ regenerative potency. The application of innovative approaches entailing generation of mitochondria-voided stem cells as well as pharmacological inhibition of mitochondrial function may elucidate the mechanism underlying transfer of healthy mitochondria to ischemic cells, thereby providing key insights in the pathology and treatment of stroke and other brain disorders plagued with…

Cardiorespiratory Medicine and HaematologyMitochondrionRegenerative medicineRats Sprague-Dawley0302 clinical medicineStem Cell Research - Nonembryonic - Humanenergy metabolismStrokeStem CellsBrainCerebral ischemiaMitochondriaStrokeNeurologycellular bioenergeticStem Cell Research - Nonembryonic - Non-HumanStem cellmedicine.symptomCardiology and Cardiovascular Medicine1.1 Normal biological development and functioningClinical SciencesEnergy metabolismregenerative medicineInflammation03 medical and health sciencesUnderpinning researchmedicineAnimalsHumansNeurology & NeurosurgeryAnimalbusiness.industryMechanism (biology)NeurosciencesStem Cell Researchmedicine.diseaseRatsBrain DisordersTransplantationDisease Models AnimalinflammationDisease ModelsCommentarycellular bioenergeticsSprague-DawleyNeurology (clinical)businessNeuroscience030217 neurology & neurosurgerytransplantationJournal of Cerebral Blood Flow & Metabolism
researchProduct

Translating intracarotid artery transplantation of bone marrow-derived NCS-01 cells for ischemic stroke: Behavioral and histological readouts and mec…

2019

Abstract The present study used in vitro and in vivo stroke models to demonstrate the safety, efficacy, and mechanism of action of adult human bone marrow‐derived NCS‐01 cells. Coculture with NCS‐01 cells protected primary rat cortical cells or human neural progenitor cells from oxygen glucose deprivation. Adult rats that were subjected to middle cerebral artery occlusion, transiently or permanently, and subsequently received intracarotid artery or intravenous transplants of NCS‐01 cells displayed dose‐dependent improvements in motor and neurological behaviors, and reductions in infarct area and peri‐infarct cell loss, much better than intravenous administration. The optimal dose was 7.5 × …

Male0301 basic medicinecell lofunctional recoverymedicine.medical_treatmentBasic fibroblast growth factorCell- and Tissue-Based TherapyPharmacologycerebral ischemia03 medical and health scienceschemistry.chemical_compound0302 clinical medicineBone Marrowmental disordersmedicinecytokineAnimalsHumansinfarctcell losslcsh:QH573-671cell transplantationStrokeIschemic Strokelcsh:R5-920business.industrylcsh:CytologyMesenchymal stem cellCell BiologyGeneral MedicineStem-cell therapymedicine.diseaseNeural stem cellcytokinesRatsTransplantation030104 developmental biologymedicine.anatomical_structurechemistrymotor deficitsEnabling Technologies for Cell‐based Clinical TranslationBone marrowStem cellbusinesslcsh:Medicine (General)030217 neurology & neurosurgeryStem Cell TransplantationDevelopmental Biology
researchProduct

Advancing stem cells: New therapeutic strategies for treating central nervous system disorders

2018

In this special issue, we explore new methods and knowledge to improve stem cell transplantation in diseases and conditions such as stroke, PD, and depression. Advancing the conventional idea regarding cell replacement in stem cell therapy, stem cells may also transfer healthy mitochondria to diseased ischemic neurons in stroke and improve the therapeutic time window of tissue plasminogen activator (tPA) in a conjunctive therapy for stroke, and human Wharton’s Jelly-derived mesenchymal stromal cells (hWJ-MSCs) may rely mainly on trophic factor secretion to induce neuroprotective effects. In addition, trophic factors such as neurotrophin-4/5 (NT-4/5) and glial cell line-derived neurotrophic …

lcsh:Diseases of the circulatory (Cardiovascular) systemParkinson's diseaselcsh:Medical technologyCentral nervous systemBioinformaticsTissue plasminogen activatorParkinson’s DiseaseWharton’s Jelly‑derived Mesenchymal Stromal CellText miningMitochondrial TargetingmedicineGlial cell line-derived neurotrophic factorStrokeDepression (differential diagnoses)biologybusiness.industryDepressionGeneral Medicinemedicine.diseaseGDNFStrokemedicine.anatomical_structureEditoriallcsh:R855-855.5lcsh:RC666-701White Matter RepairTissue Plasminogen Activatorbiology.proteinsuperparamagnetic iron oxideStem cellbusinessCosmic Radiationmedicine.drug
researchProduct

Energy Metabolism Analysis of Three Different Mesenchymal Stem Cell Populations of Umbilical Cord Under Normal and Pathologic Conditions

2020

AbstractHuman umbilical cord mesenchymal stem cells (hUC-MSCs) are a pivotal source of therapeutically active cells for regenerative medicine due to their multipotent differentiation potential, immunomodulatory and anti-inflammatory proprieties, as well as logistical collection advantages without ethical concerns. However, it remains poorly understood whether MSCs from different compartments of the human umbilical cord are therapeutically superior than others. In this study, MSCs were isolated from Wharton’s jelly (WJ-MSCs), perivascular region (PV-MSCs) and cord lining (CL-MSCs) of hUC. These cells expressed the mesenchymal markers (CD90, CD73), stemness marker (OCT4), endothelial cell adh…

Wharton’s JellyCell Survivalmedicine.medical_treatmentBioenergeticIschemic diseaseBiologyBioenergeticsUmbilical cordArticleUmbilical CordIschemic diseasesWharton's jellymedicineHumansUmbilical cord mesenchymal stem cellWharton JellyPerivascularCell ShapeStem cell therapyUmbilical cord mesenchymal stem cellsMesenchymal stem cellMesenchymal Stem CellsStem-cell therapyCord liningCell biologyMitochondriaEndothelial stem cellStrokemedicine.anatomical_structureCD146Stem cellEnergy MetabolismBiomarkers
researchProduct