0000000000236739

AUTHOR

Brian Alan Johnson

Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review

Abstract Green fractional vegetation cover ( f c ) is an important phenotypic factor in the fields of agriculture, forestry, and ecology. Spatially explicit monitoring of f c via relative vegetation abundance (RA) algorithms, especially those based on scaled maximum/minimum vegetation index (VI) values, has been widely investigated in remote sensing research. Although many studies have explored the effectiveness of RA algorithms over the past 30 years, a literature review summarizing the corresponding theoretical background, issues, current state-of-the-art techniques, challenges, and prospects has not yet been published. The overall objective of the present study was to accomplish a compre…

research product

Hyperspectral response of agronomic variables to background optical variability: Results of a numerical experiment

Understanding how biophysical and biochemical variables contribute to the spectral characteristics of vegetation canopies is critical for their monitoring. Quantifying these contributions, however, remains difficult due to extraneous factors such as the spectral variability of canopy background materials, including soil/crop-residue moisture, soil-type, and non-photosynthetic vegetation (NPV). This study focused on exploring the spectral response of two important agronomic variables (1) leaf chlorophyll content (Cab ) and (2) leaf area index (LAI) under various canopy backgrounds through a global sensitivity analysis of wheat-like canopy spectra simulated using the physically-based PROSAIL …

research product