The chemical signature of jet-driven hypernovae
Hypernovae powered by magnetic jets launched from the surface of rapidly rotating millisecond magnetars are one of the leading models to explain broad-lined Type Ic supernovae (SNe Ic-BL), and have been implicated as an important source of metal enrichment in the early Universe. We investigate the nucleosynthesis in such jet-driven hypernovae using a parameterised, but physically motivated, approach that analytically relates an artificially injected jet energy flux to the power available from the energy in differential rotation in the proto-neutron star. We find ejected $^{56}\mathrm{Ni}$ masses of $0.05\,\mathrm{M}_\odot - 0.45\,\mathrm{M}_\odot$ in our most energetic models with explosion…
Accretion in strong field gravity with eXTP
In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced 'spectral-timing-polarimetry' techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.
The Large Observatory For x-ray Timing
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…
Stellar(n,γ)Cross Section ofNi62
The 62Ni(n,gamma)63Ni(t(1/2)=100+/-2 yr) reaction plays an important role in the control of the flow path of the slow neutron-capture (s) nucleosynthesis process. We have measured for the first time the total cross section of this reaction for a quasi-Maxwellian (kT=25 keV) neutron flux. The measurement was performed by fast-neutron activation, combined with accelerator mass spectrometry to detect directly the 63Ni product nuclei. The experimental value of 28.4+/-2.8 mb, fairly consistent with a recent calculation, affects the calculated net yield of 62Ni itself and the whole distribution of nuclei with 62<A<90 produced by the weak s process in massive stars.
Nucleosynthesis of proton-rich nuclei. Experimental results on the rp-process
Experience NSCL; International audience; We report in this study the nuclear properties of proton-rich isotopes located along the rp-process path. The experiments have recently been performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The level properties above the proton separation energy of the nuclei 30S, 36K and 37Ca were measured with precision of < 10 keV. This will allow a reduction in the determination of the astrophysical (p, ) reaction rate under rp-process conditions.
Observatory science with eXTP
Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)
Dense matter with eXTP
In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics o…