0000000000237467
AUTHOR
Giacomo Messina
Double-quantum nutations in a two-level spin system
The transient oscillatory behavior of the nonlinear response of a two-level electron-spin system is experimentally investigated in a sample of glassy silica with ${E}_{1}^{\mathcal{'}}$ centers (S=(1/2)) at microwave frequency at T=4.2 K. The transient regime, excited by an intense step-modulated radiation tuned to double-quantum (DQ) resonance, is monitored by revealing the second-harmonic (SH) wave radiated by the spins undergoing DQ transitions. Time- and frequency-domain results show that the emitted SH wave has two components: the former, which vanishes at the DQ resonance, exhibits an overdamped transient regime, the latter consists of damped oscillations at a frequency which depends …
Micro-photoluminescence of Carbon Dots Deposited on Twisted Double-Layer Graphene Grown by Chemical Vapor Deposition
Carbon-based nanomaterials, such as carbon dots (CDs) and graphene (Gr), feature outstanding optical and electronic properties. Hence, their integration in optoelectronic and photonic devices is easier thanks to their low dimensionality and offers the possibility to reach high-quality performances. In this context, the combination of CDs and Gr into new nanocomposite materials CDs/Gr can further improve their optoelectronic properties and eventually create new ones, paving the way for the development of advanced carbon nanotechnology. In this work, we have thoroughly investigated the structural and emission properties of CDs deposited on single-layer and bilayer graphene lying on a SiO2/Si …
Carbon Dots Dispersed on Graphene/SiO2/Si: A Morphological Study
Low-dimensional carbon materials occupy a relevant role in the field of nanotechnology. Herein, the authors report a study conducted by atomic force microscopy and Raman spectroscopy on the deposition of carbon dots onto graphene surfaces. The study aims at understanding if and how the morphology and the microstructure of chemical vapor deposited graphene on Si/SiO2 may change due to the interaction with the carbon dots. Potential alteration in the graphene's electrical properties might be detrimental for optoelectronic applications. The deposition of carbon dots dispersed in water and ethanol solvents are explored to investigate the effect of solvents with different fluidic properties. The…