0000000000237914
AUTHOR
Wilfrid Farabolini
Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs
In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…
Mechanisms of Electron-Induced Single-Event Latchup
In this paper, possible mechanisms by which electrons can induce single-event latchups in electronics are discussed. The energy deposition and the nuclear fragments created by electrons in silicon are analyzed in this context. The cross section enhancement effect in the presence of high-Z materials is discussed. First experimental results of electron-induced latchups are shown in static random access memory devices with low linear energy transfer thresholds. The radiation hardness assurance implications and future work are discussed.
Mechanisms of Electron-Induced Single Event Upsets in Medical and Experimental Linacs
In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…
High-Energy Electron-Induced SEUs and Jovian Environment Impact
We present experimental evidence of electron-induced upsets in a reference European Space Agency (ESA) single event upset (SEU) monitor, induced by a 200-MeV electron beam at the Very energetic Electronic facility for Space Planetary Exploration in harsh Radiation environments facility at CERN. Comparison of experimental cross sections and simulated cross sections is shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons, flash effects, and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. The ESA Jupiter Icy Moons Explorer mission, to be launched in 2022, presents a challenging radiat…
SEU characterization of commercial and custom-designed SRAMs based on 90 nm technology and below
International audience; The R2E project at CERN has tested a few commercial SRAMs and a custom-designed SRAM, whose data are complementary to various scientific publications. The experimental data include low- and high-energy protons, heavy ions, thermal, intermediate- and high-energy neutrons, high-energy electrons and high-energy pions.
Mechanisms of Electron-Induced Single Event Latchup
In this paper, possible mechanisms by which electrons can induce single-event latchups in electronics are discussed. The energy deposition and the nuclear fragments created by electrons in silicon are analyzed in this context. The cross section enhancement effect in the presence of high-Z materials is discussed. First experimental results of electron-induced latchups are shown in static random access memory devices with low linear energy transfer thresholds. The radiation hardness assurance implications and future work are discussed. peerReviewed
Analysis of the Photoneutron Field Near the THz Dump of the CLEAR Accelerator at CERN With SEU Measurements and Simulations
We study the radiation environment near the terahertz (THz) dump of the CERN Linear Electron Accelerator for Research (CLEAR) electron accelerator at CERN, using FLUktuierende KAskade in German (FLUKA) simulations and single-event upset (SEU) measurements taken with 32-Mbit Integrated Silicon Solution Inc. (ISSI) static random access memories (SRAMs). The main focus is on the characterization of the neutron field to evaluate its suitability for radiation tests of electronics in comparison with other irradiation facilities. Neutrons at CLEAR are produced via photonuclear reactions, mostly initiated by photons from the electromagnetic cascades that occur when the beam is absorbed by the dump …
Mono-energetic electron induced single-event effects at the VESPER facility
We present experimental evidence of electron induced upsets in a reference ESA SEU monitor, the SEU based particle detector, induced by 200 MeV electron beam at the VESPER facility at CERN. Comparison of experimental cross sections and simulated cross sections are shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. Insight is given as to possible overall electron contribution to the upset rates in the Jovian radiation environment inside a typical spacecraft shielding are evaluated.
Electron-Induced Upsets and Stuck Bits in SDRAMs in the Jovian Environment
This study investigates the response of synchronous dynamic random access memories to energetic electrons and especially the possibility of electrons to cause stuck bits in these memories. Three different memories with different node sizes (63, 72, and 110 nm) were tested. Electrons with energies between 6 and 200 MeV were used at RADiation Effects Facility (RADEF) in Jyvaskyla, Finland, and at Very energetic Electron facility for Space Planetary Exploration missions in harsh Radiative environments (VESPER) in The European Organization for Nuclear Research (CERN), Switzerland. Photon irradiation was also performed in Jyvaskyla. In these irradiation tests, stuck bits originating from electro…