0000000000240197

AUTHOR

Michal Václavů

In-situ electrochemical atomic force microscopy study of aging of magnetron sputtered Pt-Co nanoalloy thin films during accelerated degradation test

Abstract A Pt-Co nanoalloy thin film catalyst was prepared by using simultaneous magnetron sputtering of Pt and Co. The catalyst was characterized during accelerated degradation test using in-situ electrochemical atomic force microscopy complemented with ex-situ techniques such as energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and synchrotron radiation photoelectron spectroscopy. The combined results gave the full step-by-step picture of the catalyst behavior during the aging test.

research product

Platinum-doped CeO2 thin film catalysts prepared by magnetron sputtering.

The interaction of Pt with CeO(2) layers was investigated by using photoelectron spectroscopy. The 30 nm thick Pt doped CeO(2) layers were deposited simultaneously by rf-magnetron sputtering on a Si(001) substrate, multiwall carbon nanotubes (CNTs) supported by a carbon diffusion layer of a polymer membrane fuel cell and on CNTs grown on the silicon wafer by the CVD technique. The synchrotron radiation X-ray photoelectron spectra showed the formation of cerium oxide with completely ionized Pt(2+,4+) species, and with the Pt(2+)/Pt(4+) ratio strongly dependent on the substrate. The TEM and XRD study showed the Pt(2+)/Pt(4+) ratio is dependent on the film structure.

research product

Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum

International audience; Platinum is the most versatile element in catalysis, but it is rare and its high price limits large-scale applications, for example in fuel-cell technology. Still, conventional catalysts use only a small fraction of the Pt content, that is, those atoms located at the catalyst's surface. To maximize the noble-metal efficiency, the precious metal should be atomically dispersed and exclusively located within the outermost surface layer of the material. Such atomically dispersed Pt surface species can indeed be prepared with exceptionally high stability. Using DFT calculations we identify a specific structural element, a ceria ``nanopocket'', which binds Pt2+ so strongly…

research product

Back Cover: Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum (Angew. Chem. Int. Ed. 39/2014)

research product

Rücktitelbild: Auf dem Weg zu größtmöglicher Effizienz bei der katalytischen Nutzung von Edelmetallen: atomar dispergiertes Oberflächen-Platin (Angew. Chem. 39/2014)

research product

Electrochemically shape-controlled transformation of magnetron sputtered platinum films into platinum nanostructures enclosed by high-index facets

Abstract A new method based on transformation of magnetron sputtered platinum thin films into platinum nanostructures enclosed by high-index facets, using electrochemical potential cycling in a twin working electrode system is reported. The controllable formation of various Pt nanostructures, described in this paper, indicates that this method can be used to control a selective growth of high purity Pt nanostructures with specific shapes (facets or edges). The method opens up new possibilities for electrochemical preparation of nanostructured Pt catalysts at high yield.

research product

Auf dem Weg zu größtmöglicher Effizienz bei der katalytischen Nutzung von Edelmetallen: atomar dispergiertes Oberflächen-Platin

Platin ist das am vielseitigsten eingesetzte Element in der Katalyse. Allerdings begrenzt der hohe Preis des Edelmetalls die Verwendung in vielen Bereichen, z. B. in Katalysatormaterialien fur Brennstoffzellen. Trotzdem nutzen konventionelle Katalysatoren oftmals nur einen Bruchteil ihres Pt-Gehaltes, namlich diejenigen Atome, die sich auf der Oberflache des Katalysators befinden. Eine effizientere Edelmetallnutzung setzt somit eine hohere, bevorzugt atomare Dispersion der Pt-Atome auf der Oberflache voraus. Tatsachlich ist es moglich, solche atomar dispergierten Pt-Spezies mit sehr hoher Stabilitat auf einer Katalysatoroberflache herzustellen. Mithilfe von DFT-Rechnungen identifizieren wir…

research product