0000000000240571
AUTHOR
Victor M. Ruiz-arroyo
Monitoring of Bacillus Thuringiensis Cry3Aa Toxin Pore Formation using Artificial Bilayer Array with Fused Brush Border Membrane Vesicles from Colorado Potato Beetle Larvae
Colorado potato beetle chymotrypsin genes are differentially regulated in larval midgut in response to the plant defense inducer hexanoic acid or the Bacillus thuringiensis Cry3Aa toxin
When Colorado potato beetle larvae ingested potato plants treated with the plant defense inducer compound hexanoic acid, midgut chymotrypsin enzyme activity increased, and the corresponding chymotrypsin genes were differentially expressed, evidence of the larval digestive proteolytic system's plasticity. We previously reported increased susceptibility to Cry3Aa toxin in larvae fed hexanoic acid treated plants. Here we show that the most expressed chymotrypsin gene in larvae fed hexanoic acid treated plants, CTR6, was dramatically downregulated in Cry3Aa intoxicated larvae. lde-miR-965-5p and lde-miR-9a-5p microRNAs, predicted to target CTR6, might be involved in regulating the response to h…
Validation of ADAM10 metalloprotease as aBacillus thuringiensisCry3Aa toxin functional receptor in Colorado potato beetle (Leptinotarsa decemlineata)
Bacillus thuringiensis parasporal crystal proteins (Cry proteins) are insecticidal pore-forming toxins that bind to specific receptor molecules on the brush border membrane of susceptible insect midgut cells to exert their toxic action. In the Colorado potato beetle (CPB), a coleopteran pest, we previously proposed that interaction of Cry3Aa toxin with a CPB ADAM10 metalloprotease is an essential part of the mode of action of this toxin. Here, we annotated the gene sequence encoding an ADAM10 metalloprotease protein (CPB-ADAM10) in the CPB genome sequencing project, and using RNA interference gene silencing we demonstrated that CPB-ADAM10 is a Cry3Aa toxin functional receptor in CPB. Cry3Aa…
Oxylipin mediated stress response of a miraculin-like protease inhibitor in Hexanoic acid primed eggplant plants infested by Colorado potato beetle
Insect-plant interactions are governed by a complex equilibrium between the mechanisms through which plant recognize insect attack and orchestrate downstream signaling events that trigger plant defense responses, and the mechanisms by which insects overcome plant defenses. Due to this tight and dynamic interplay, insight into the nature of the plant defense response can be gained by analyzing changes in the insect herbivores digestive system upon plant feeding. In this work we have identified a Solanum melongena miraculin-like protease inhibitor in the midgut juice of Colorado potato larvae feeding on eggplant plants treated with the natural inducer of plant defenses hexanoic acid. We analy…