0000000000241354

AUTHOR

Fabian Ewert

showing 4 related works from this author

3/4-efficient Bell measurement with passive linear optics and unentangled ancillae

2014

It is well known that an unambiguous discrimination of the four optically encoded Bell states is possible with a probability of $50\%$ at best, when using static, passive linear optics and arbitrarily many vacuum mode ancillae. By adding unentangled single-photon ancillae, we are able to surpass this limit and reach a success probability of at least $75\%$. We discuss the error robustness of the proposed scheme and a generalization to reach a success probability arbitrarily close to $100\%$.

Bell stateLinear opticsQuantum PhysicsMeasurement theoryComputer Science::Emerging TechnologiesRobustness (computer science)Computer scienceQuantum mechanicsGeneral Physics and AstronomyFOS: Physical sciencesQuantum informationQuantum Physics (quant-ph)Algorithm
researchProduct

Ultrafast Fault-Tolerant Long-Distance Quantum Communication with Static Linear Optics

2017

We present an in-depth analysis regarding the error resistance and optimization of our all-optical Bell measurement and ultrafast long-distance quantum communication scheme proposed in [arXiv:1503.06777]. In order to promote our previous proposal from loss- to fault-tolerance, we introduce a general and compact formalism that can also be applied to other related schemes (including non-all-optical ones such as [PRL 112, 250501]). With the help of this new representation we show that our communication protocol does not only counteract the inevitable photon loss during channel transmission, but is also able to resist common experimental errors such as Pauli-type errors (bit- and phase-flips) a…

PhotonFOS: Physical sciencesQuantum channelQuantum imagingTopology01 natural sciencesMultiplexing010309 opticsQuantum error correctionQuantum mechanics0103 physical sciencesElectronic engineering010306 general physicsQuantum information sciencePhysicsBell stateQuantum Physicsbusiness.industryDetectorNonlinear opticsPhysical opticsQuantum technologyQubitPhotonicsQuantum Physics (quant-ph)businessUltrashort pulse
researchProduct

Ultrafast Long-Distance Quantum Communication with Static Linear Optics

2015

We propose a projection measurement onto encoded Bell states with a static network of linear optical elements. By increasing the size of the quantum error correction code, both Bell measurement efficiency and photon-loss tolerance can be made arbitrarily high at the same time. As a main application, we show that all-optical quantum communication over large distances with communication rates similar to those of classical communication is possible solely based on local state teleportations using optical sources of encoded Bell states, fixed arrays of beam splitters, and photon detectors. As another application, generalizing state teleportation to gate teleportation for quantum computation, we…

Quantum PhysicsQuantum networkBell stateComputer scienceFOS: Physical sciencesTheoryofComputation_GENERALGeneral Physics and AstronomyQuantum PhysicsQuantum channelQuantum energy teleportationTopology01 natural sciences010305 fluids & plasmasClassical mechanicsSuperdense codingComputerSystemsOrganization_MISCELLANEOUS0103 physical sciencesQuantum Physics (quant-ph)010306 general physicsQuantum information scienceQuantumQuantum teleportationPhysical Review Letters
researchProduct

Teleportation-assisted optical controlled-sign gates

2019

Reliable entangling gates for qubits encoded in single-photon states represent a major challenge on the road to scalable quantum computing architectures based on linear optics. In this work, we present two approaches to develop high-fidelity, near-deterministic controlled-sign-shift gates based on the techniques of quantum gate teleportation. On the one hand, teleportation in a discrete-variable setting, i.e., for qubits, offers unit-fidelity operations but suffers from low success probabilities. Here, we apply recent results on advanced linear optical Bell measurements to reach a near-deterministic regime. On the other hand, in the setting of continuous variables, associated with coherent …

PhysicsGaussianData_CODINGANDINFORMATIONTHEORYQuantum PhysicsTopologyTeleportationsymbols.namesakeComputer Science::Emerging TechnologiesQuantum gateQubitScalabilitysymbolsCoherent statesFocus (optics)Quantum computerPhysical Review A
researchProduct