6533b836fe1ef96bd12a0783
RESEARCH PRODUCT
Teleportation-assisted optical controlled-sign gates
Peter Van LoockFabian Ewertsubject
PhysicsGaussianData_CODINGANDINFORMATIONTHEORYQuantum PhysicsTopologyTeleportationsymbols.namesakeComputer Science::Emerging TechnologiesQuantum gateQubitScalabilitysymbolsCoherent statesFocus (optics)Quantum computerdescription
Reliable entangling gates for qubits encoded in single-photon states represent a major challenge on the road to scalable quantum computing architectures based on linear optics. In this work, we present two approaches to develop high-fidelity, near-deterministic controlled-sign-shift gates based on the techniques of quantum gate teleportation. On the one hand, teleportation in a discrete-variable setting, i.e., for qubits, offers unit-fidelity operations but suffers from low success probabilities. Here, we apply recent results on advanced linear optical Bell measurements to reach a near-deterministic regime. On the other hand, in the setting of continuous variables, associated with coherent states, squeezing, and, typically, Gaussian states, teleportation can be performed in a deterministic fashion, but the finite amount of squeezing implies an inevitable deformation of a teleported single-mode state. Using a new generalized form of the nonlinear-sign-shift gate for gate teleportation, we are able to achieve fidelities of the resulting controlled-sign gate above $90%$. A special focus is also put on a comparison of the two approaches, not only with respect to fidelity and success probability, but also in terms of resource consumption.
year | journal | country | edition | language |
---|---|---|---|---|
2019-03-22 | Physical Review A |