0000000000243624
AUTHOR
Ludwig Schultz
Influence of growth parameters and melt convection on the solid-liquid interface during RF-floating zone crystal growth of intermetallic compounds
Abstract The influence of growth parameters and melt convection on the solid–liquid interface of the intermetallic compound Ni3Si grown by the RF-floating zone technique was investigated experimentally as well as numerically. Numerical simulations showed that the heat transfer is strongly influenced by the electromagnetically driven and Marangoni convections whereas both the buoyancy and feed rotation have a negligible effect. It was found experimentally that the inductor design, the rod diameter and the length of the molten zone influence the solid–liquid interface shape significantly. The electromagnetically driven convection increases dramatically with increasing zone length due to the r…
Electronic structure of the austenitic and martensitic state of magnetocaloric Ni-Mn-In Heusler alloy films
Changes of the electronic and magnetic structure near the martensitic phase transition of Ni-Mn-In Heusler alloys doped with Co are investigated by experiment and theory. The nonstoichiometric Ni${}_{48}$Co${}_{5}$Mn${}_{35}$In${}_{12}$ epitaxial film undergoes a transition from a weakly magnetic martensitic phase below ${T}_{m}=350$ K to a ferromagnetic austenitic phase above ${T}_{m}$. Element-specific magnetic moments and the unoccupied density of states function is investigated using x-ray magnetic circular dichroism. We find an antiparallel alignment of Mn and Ni/Co magnetic moments in both phases. The electronic structure is calculated using the SPR-KKR Green's function approach consi…
Magnetic field controlled FZ single crystal growth of intermetallic compounds
Abstract Intermetallic rare-earth-transition-metal compounds with their coexistence of magnetic ordering and superconductivity are still of great scientific interest. The crystal growth of bulk single crystals is very often unsuccessful due to an unfavorable solid–liquid interface geometry enclosing concave fringes. The aim of the work is the contactless control of heat and material transport during floating-zone single crystal growth of intermetallic compounds. This control is provided by a tailored design of the electromagnetic field and the resulting electromagnetically driven convection. Numerical simulations for the determination of the electromagnetic field configuration induced by th…
Full Tunability of Strain along the fcc-bcc Bain Path in Epitaxial Films and Consequences for Magnetic Properties
Strained coherent film growth is commonly either limited to ultrathin films or low strains. Here, we present an approach to achieve high strains in thicker films, by using materials with inherent structural instabilities. As an example, 50 nm thick epitaxial films of the ${\mathrm{Fe}}_{70}{\mathrm{Pd}}_{30}$ magnetic shape memory alloy are examined. Strained coherent growth on various substrates allows us to adjust the tetragonal distortion from $c/{a}_{\mathrm{bct}}=1.09$ to 1.39, covering most of the Bain transformation path from fcc to bcc crystal structure. Magnetometry and x-ray circular dichroism measurements show that the Curie temperature, orbital magnetic moment, and magnetocrysta…