0000000000243885
AUTHOR
Maria Loukaki
On the number of constituents of products of characters
It has been conjectured that if the number of distinct irreducible constituents of the product of two faithful irreducible characters of a finite p-group, for p ≥ 5, is bigger than (p + 1)/2, then it is at least p. We give a counterexample to this conjecture.
Homogeneous products of characters
I. M. Isaacs has conjectured (see \cite{isa00}) that if the product of two faithful irreducible characters of a solvable group is irreducible, then the group is cyclic. In this paper we prove a special case of the following conjecture, which generalizes Isaacs conjecture. Suppose that $G$ is solvable and that $\psi,\phi\in\Irr(G)$ are faithful. If $\psi \phi=m\chi$ where $m$ is a positive integer and $\chi \in \Irr(G)$ then $\psi$ and $\phi$ vanish on $G- Z(G)$. In particular we prove that the above conjecture holds for $p$-groups.