6533b870fe1ef96bd12cf0fd

RESEARCH PRODUCT

Homogeneous products of characters

Alexander MoretóEdith Adan-banteMaria Loukaki

subject

CombinatoricsConjectureAlgebra and Number TheoryIntegerGroup (mathematics)Solvable groupHomogeneousProduct (mathematics)FOS: MathematicsGroup Theory (math.GR)Mathematics::Representation TheoryMathematics - Group TheoryMathematics

description

I. M. Isaacs has conjectured (see \cite{isa00}) that if the product of two faithful irreducible characters of a solvable group is irreducible, then the group is cyclic. In this paper we prove a special case of the following conjecture, which generalizes Isaacs conjecture. Suppose that $G$ is solvable and that $\psi,\phi\in\Irr(G)$ are faithful. If $\psi \phi=m\chi$ where $m$ is a positive integer and $\chi \in \Irr(G)$ then $\psi$ and $\phi$ vanish on $G- Z(G)$. In particular we prove that the above conjecture holds for $p$-groups.

https://dx.doi.org/10.48550/arxiv.math/0412382