0000000000247542

AUTHOR

Yaroslav P. Sysak

showing 6 related works from this author

Radical Rings with Soluble Adjoint Groups

2002

Abstract An associative ring R , not necessarily with an identity, is called radical if it coincides with its Jacobson radical, which means that the set of all elements of R forms a group denoted by R ∘ under the circle operation r  ∘  s  =  r  +  s  +  rs on R . It is proved that every radical ring R whose adjoint group R ∘ is soluble must be Lie-soluble. Moreover, if the commutator factor group of R ∘ has finite torsion-free rank, then R is locally nilpotent.

Reduced ringDiscrete mathematicsRing (mathematics)Lie-soluble ringAlgebra and Number TheoryGroup (mathematics)Locally nilpotentadjoint groupJacobson radicalCombinatoricsIdentity (mathematics)radical ringsoluble groupUnit (ring theory)Group ringMathematicsJournal of Algebra
researchProduct

Radical Rings with Engel Conditions

2000

Abstract An associative ring R without unity is called radical if it coincides with its Jacobson radical, which means that the set of all elements of R forms a group denoted by R ∘  under the circle operation r  ∘  s  =  r  +  s  +  rs on R . It is proved that, for a radical ring R , the group R ∘  satisfies an n -Engel condition for some positive integer n if and only if R is m -Engel as a Lie ring for some positive integer m depending only on n .

Discrete mathematicsReduced ringPrincipal ideal ringRing (mathematics)Algebra and Number TheoryGroup (mathematics)adjoint groupJacobson radicalRadical of a ringradical ringIntegerEngel conditionGroup ringMathematicsJournal of Algebra
researchProduct

Associative rings whose adjoint semigroup is locally nilpotent

2001

The set of all elements of an associative ring R, not necessarily with a unit element, forms a semigroup R ad under the circle operation \({r\circ s}={r+s+rs}\) on R. The ring R is called radical if R ad is a group. It is proved that the semigroup R ad is nilpotent of class n (in sense of A. Mal'cev or B. H. Neumann and T. Taylor) if and only if the ring R is Lie-nilpotent of class n. This yields a positive answer to a question posed by A. Krasil'nikov and independently considered by D. Riley and V. Tasic. It is also shown that the adjoint group of a radical ring R is locally nilpotent if and only if R is locally Lie-nilpotent.

Discrete mathematicsReduced ringPure mathematicsRing (mathematics)NilpotentSemigroupGroup (mathematics)General MathematicsMathematics::Rings and AlgebrasLocally nilpotentUnipotentUnit (ring theory)MathematicsArchiv der Mathematik
researchProduct

On Associative Rings with Locally Nilpotent Adjoint Semigroup

2003

Abstract The set of all elements of an associative ring R, not necessarily with a unit element, forms a semigroup R ad under the circle operation r ∘ s = r + s + rs for all r, s in R. This semigroup is locally nilpotent if every finitely generated subsemigroup of R ad is nilpotent (in sense of A. I. Mal'cev or B. H. Neumann and T. Taylor). The ring R is locally Lie-nilpotent if every finitely generated subring of R is Lie-nilpotent. It is proved that R ad is a locally nilpotent semigroup if and only if R is a locally Lie-nilpotent ring.

Reduced ringDiscrete mathematicsPure mathematicsAlgebra and Number TheoryMathematics::Rings and AlgebrasLocally nilpotentUnipotentSubringMathematics::Group TheoryNilpotentBicyclic semigroupNilpotent groupMathematics::Representation TheoryUnit (ring theory)MathematicsCommunications in Algebra
researchProduct

Associative rings with metabelian adjoint group

2004

Abstract The set of all elements of an associative ring R, not necessarily with a unit element, forms a monoid under the circle operation r∘s=r+s+rs on R whose group of all invertible elements is called the adjoint group of R and denoted by R°. The ring R is radical if R=R°. It is proved that a radical ring R is Lie metabelian if and only if its adjoint group R° is metabelian. This yields a positive answer to a question raised by S. Jennings and repeated later by A. Krasil'nikov. Furthermore, for a ring R with unity whose multiplicative group R ∗ is metabelian, it is shown that R is Lie metabelian, provided that R is generated by R ∗ and R modulo its Jacobson radical is commutative and arti…

Discrete mathematicsPure mathematicsRing (mathematics)Algebra and Number TheoryGroup (mathematics)Metabelian groupMultiplicative groupLocal ringRadical ringJacobson radicalMetabelian groupAssociative ringLie metabelian ringAdjoint grouplaw.inventionInvertible matrixlawUnit (ring theory)MathematicsJournal of Algebra
researchProduct

Local nearrings with dihedral multiplicative group

2004

AbstractA not necessarily zero-symmetric nearring R with a unit element is called local if the set of all non-invertible elements of R forms a subgroup of the additive group of R. It is proved that every local nearring whose multiplicative group is dihedral is finite and its additive group is either a 3-group of order at most 9 or a 2-group of order at most 32.

Local nearringAlgebra and Number TheoryDicyclic groupMultiplicative groupDihedral angleCombinatoricsDihedral groupOrder (group theory)Element (category theory)Factorized groupDihedral group of order 6Unit (ring theory)Additive groupMathematicsJournal of Algebra
researchProduct