0000000000249728

AUTHOR

Christine Hornung

Separation of atomic and molecular ions by ion mobility with an RF carpet

Gas-filled stopping cells are used at accelerator laboratories for the thermalization of high-energy radioactive ion beams. Common challenges of many stopping cells are a high molecular background of extracted ions and limitations of extraction efficiency due to space-charge effects. At the FRS Ion Catcher at GSI, a new technique for removal of ionized molecules prior to their extraction out of the stopping cell has been developed. This technique utilizes the RF carpet for the separation of atomic ions from molecular contaminant ions through their difference in ion mobility. Results from the successful implementation and test during an experiment with a 600~MeV/u $^{124}$Xe primary beam are…

research product

Multi-nucleon transfer reactions at ion catcher facilities : a new way to produce and study heavy neutron-rich nuclei

Abstract The production of very neutron-rich nuclides heavier than fission fragments is an ongoing experimental challenge. Multi-nucleon transfer reactions (MNT) have been suggested as a method to produce these nuclides. By thermalizing the reaction products in gas-filled stopping cells, we can deliver them as cooled high-quality beams to decay, laser and mass spectrometry experiments. High precision mass spectrometry will allow for the first time to universally and unambiguously identify the atomic and proton numbers of the ions produced in MNT reactions. In this way their ground and isomeric state properties can be studied in high-precision measurements. In experiments at IGISOL, Finland …

research product

Rate capability of a cryogenic stopping cell for uranium projectile fragments produced at 1000 MeV/u

At the Low-Energy Branch (LEB) of the Super-FRS at FAIR, projectile and fission fragments will be produced at relativistic energies, separated in-flight, energy-bunched, slowed down and thermalized in a cryogenic stopping cell (CSC) filled with ultra-pure He gas. The fragments are extracted from the stopping cell using a combination of DC and RF electric fields and gas flow. A prototype CSC for the LEB has been developed and successfully commissioned at the FRS Ion Catcher at GSI. Ionization of He buffer gas atoms during the stopping of energetic ions creates a region of high space charge in the stopping cell. The space charge decreases the extraction efficiency of stopping cells since the …

research product

Production of Exotic Nuclei via MNT Reactions Using Gas Cells

The use of multi-nucleon transfer (MNT) reactions to produce neutron-rich nuclei in the heavy region has received an increased attention in the last decade. The feasibility of employing such reactions at the FRS Ion Catcher facility at GSI and the IGISOL facility at JYFL is studied using a combination of theoretical calculations and experiment simulations. The reactions are computed within a Langevin-type model, and the Geant program is used to simulate the transport of the resulting products within the experimental setups of the above-mentioned facilities. The angular distribution of ion release, possible target choices and target-to-beam-dump distances are discussed. peerReviewed

research product

Radioactive Beams for Image-Guided Particle Therapy : The BARB Experiment at GSI

Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separati…

research product

First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

Physics letters / B 744, 137 - 141 (2015). doi:10.1016/j.physletb.2015.03.047

research product

Dawning of the N=32 shell closure seen through precision mass measurements of neutron-rich titanium isotopes

A precision mass investigation of the neutron-rich titanium isotopes 51 − 55 Ti was performed at TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure, and the overall uncertainties of the 52 − 55 Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N = 32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements a…

research product

A Novel Method for the Measurement of Half-Lives and Decay Branching Ratios of Exotic Nuclei

A novel method for simultaneous measurement of masses, Q-values, isomer excitation energies, half-lives and decay branching ratios of exotic nuclei has been demonstrated. The method includes first use of a stopping cell as an ion trap, combining containment of precursors and decay-recoils for variable durations in a cryogenic stopping cell (CSC), and afterwards the identification and counting of them by a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). Feasibility has been established by recording the decay and growth of $^{216}$Po and $^{212}$Pb (alpha decay) and of $^{119m2}$Sb (t$_{1/2}$ = 850$\pm$90 ms) and $^{119g}$Sb (isomer transition), obtaining half-lives and bran…

research product

Mass and half-life measurements of neutron-deficient iodine isotopes

The European physical journal / A 56(5), 143 (2020). doi:10.1140/epja/s10050-020-00153-5

research product

Removal of molecular contamination in low-energy RIBs by the isolation-dissociation-isolation method

Nuclear instruments & methods in physics research / B 463, 324 - 326 (2020). doi:10.1016/j.nimb.2019.04.072

research product

The science case of the FRS Ion Catcher for FAIR Phase-0

The FRS Ion Catcher at GSI enables precision experiments with thermalized projectile and fission fragments. At the same time it serves as a test facility for the Low-Energy Branch of the Super-FRS at FAIR. The FRS Ion Catcher has been commissioned and its performance has been characterized in five experiments with 238U and 124Xe projectile and fission fragments produced at energies in the range from 300 to 1000 MeV/u. High and almost element-independent efficiencies for the thermalization of short-lived nuclides produced at relativistic energies have been obtained. High-accuracy mass measurements of more than 30 projectile and fission fragments have been performed with a multiple-reflection…

research product

Radioactive Beams for Image-Guided Particle Therapy: The BARB Experiment at GSI

Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separati…

research product

Mass measurements of As, Se, and Br nuclei, and their implication on the proton-neutron interaction strength toward the N=Z line

Mass measurements of the $^{69}$As, $^{70,71}$Se and $^{71}$Br isotopes, produced via fragmentation of a $^{124}$Xe primary beam at the FRS at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1,000,000. For the $^{69}$As isotope, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only 10 events. For the $^{70}$Se isotope, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of $\delta$m/m = 4.0$\times 10^{-8}$, with less than 500 events. The masses of the $^{71}$Se and $^{71}$Br isotopes were measured…

research product

High-resolution, accurate multiple-reflection time-of-flight mass spectrometry for short-lived, exotic nuclei of a few events in their ground and low-lying isomeric states

Physical review / C covering nuclear physics 99(6), 064313 (2019). doi:10.1103/PhysRevC.99.064313

research product

Studying Gamow-Teller transitions and the assignment of isomeric and ground states at $N=50$

Direct mass measurements of neutron-deficient nuclides around the N=50 shell closure below $^{100}$Sn were performed at the FRS Ion Catcher (FRS-IC) at GSI, Germany. The nuclei were produced by projectile fragmentation of $^{124}$Xe, separated in the fragment separator FRS and delivered to the FRS-IC. The masses of 14 ground states and two isomers were measured with relative mass uncertainties down to 1×10−7 using the multiple-reflection time-of-flight mass spectrometer of the FRS-IC, including the first direct mass measurements of $^{98}$Cd and $^{97}$Rh. A new QEC=5437±67 keV was obtained for $^{98}$Cd, resulting in a summed Gamow-Teller (GT) strength for the five observed transitions (0+…

research product