0000000000253370

AUTHOR

Miguel D. Mahecha

The Low Dimensionality of Development

AbstractThe World Bank routinely publishes over 1500 “World Development Indicators” to track the socioeconomic development at the country level. A range of indices has been proposed to interpret this information. For instance, the “Human Development Index” was designed to specifically capture development in terms of life expectancy, education, and standard of living. However, the general question which independent dimensions are essential to capture all aspects of development still remains open. Using a nonlinear dimensionality reduction approach we aim to extract the core dimensions of development in a highly efficient way. We find that more than 90% of variance in the WDIs can be represen…

research product

Ranking drivers of global carbon and energy fluxes over land

The accurate estimation of carbon and heat fluxes at global scale is paramount for future policy decisions in the context of global climate change. This paper analyzes the relative relevance of potential remote sensing and meteorological drivers of global carbon and energy fluxes over land. The study is done in an indirect way via upscaling both Gross Primary Production (GPP) and latent energy (LE) using Gaussian Process regression (GPR). In summary, GPR is successfully compared to multivariate linear regression (RMSE gain of +4.17% in GPP and +7.63% in LE) and kernel ridge regression (+2.91% in GPP and +3.07% in LE). The best GP models are then studied in terms of explanatory power based o…

research product

Discovering Differential Equations from Earth Observation Data

Modeling and understanding the Earth system is a constant and challenging scientific endeavour. When a clear mechanistic model is unavailable, complex or uncertain, learning from data can be an alternative. While machine learning has provided excellent methods for detection and retrieval, understanding the governing equations of the system from observational data seems an elusive problem. In this paper we introduce sparse regression to uncover a set of governing equations in the form of a system of ordinary differential equations (ODEs). The presented method is used to explicitly describe variable relations by identifying the most expressive and simplest ODEs explaining data to model releva…

research product

Kernel methods and their derivatives: Concept and perspectives for the earth system sciences.

Kernel methods are powerful machine learning techniques which implement generic non-linear functions to solve complex tasks in a simple way. They Have a solid mathematical background and exhibit excellent performance in practice. However, kernel machines are still considered black-box models as the feature mapping is not directly accessible and difficult to interpret.The aim of this work is to show that it is indeed possible to interpret the functions learned by various kernel methods is intuitive despite their complexity. Specifically, we show that derivatives of these functions have a simple mathematical formulation, are easy to compute, and can be applied to many different problems. We n…

research product

sPlotOpen – An environmentally balanced, open‐access, global dataset of vegetation plots

Datos disponibles en https://github.com/fmsabatini/sPlotOpen_Code

research product

A unified vegetation index for quantifying the terrestrial biosphere

[EN] Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation biophysical and physiological parameters. The presented nonlinear generalization of the celebrated normalized difference vegetation index (NDVI) consistently improves accuracy in monitoring key parameters, such as leaf area index, gross prim…

research product

Inferring causation from time series in earth system sciences

The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform causeme.net to close the gap between method users and developers.

research product