6533b870fe1ef96bd12cf282

RESEARCH PRODUCT

Inferring causation from time series in earth system sciences

Jie SunJonas PetersJordi Muñoz-maríPeter SpirtesSebastian BathianyMarten SchefferMarlene KretschmerKun ZhangMiguel D. MahechaJakob ZscheischlerJakob ZscheischlerJakob ZscheischlerBernhard SchölkopfEthan R. DeyleMarkus ReichsteinRick QuaxGustau Camps-vallsDim CoumouDim CoumouGeorge SugiharaClark GlymourErik M. BolltEgbert H. Van NesJakob RungeJakob Runge

subject

0301 basic medicineEarth scienceAquatic Ecology and Water Quality ManagementDynamical systems theoryComputer science530 PhysicsDatenmanagement und AnalyseSciencereviewGeneral Physics and Astronomyheart02 engineering and technologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesDatabasesLife ScienceCausationStatistical physics thermodynamics and nonlinear dynamicsintermethod comparisonlcsh:Scienceresearch workScientific enterpriseMultidisciplinaryWIMEKSeries (mathematics)QComputational sciencefeasibility study500General ChemistryAquatische Ecologie en Waterkwaliteitsbeheersimulation021001 nanoscience & nanotechnologyData sciencecausal inference climateEarth system scienceEnvironmental sciences030104 developmental biologytime series analysisCausal inferencePerspectiveBenchmark (computing)Observational studylcsh:Qconceptual frameworkdata management0210 nano-technologyClimate sciences

description

The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform causeme.net to close the gap between method users and developers.

10.1038/s41467-019-10105-3https://doi.org/10.1038/s41467-019-10105-3