0000000000195409

AUTHOR

Markus Reichstein

0000-0001-5736-1112

The FLUXCOM ensemble of global land-atmosphere energy fluxes

Although a key driver of Earth’s climate system, global land-atmosphere energy fluxes are poorly constrained. Here we use machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with remote sensing and meteorological data to estimate global gridded net radiation, latent and sensible heat and their uncertainties. The resulting FLUXCOM database comprises 147 products in two setups: (1) 0.0833° resolution using MODIS remote sensing data (RS) and (2) 0.5° resolution using remote sensing and meteorological data (RS + METEO). Within each setup we use a full factorial design across machine learning methods, forcing datasets and energy balance closure corrections. For…

research product

Constraining Uncertainty in Projected Gross Primary Production With Machine Learning

The terrestrial biosphere is currently slowing down global warming by absorbing about 30% of human emissions of carbon dioxide (CO2). The largest flux of the terrestrial carbon uptake is gross primary production (GPP) defined as the production of carbohydrates by photosynthesis. Elevated atmospheric CO2 concentration is expected to increase GPP (“CO2 fertilization effect”). However, Earth system models (ESMs) exhibit a large range in simulated GPP projections. In this study, we combine an existing emergent constraint on CO2 fertilization with a machine learning approach to constrain the spatial variations of multimodel GPP projections. In a first step, we use observed changes in the CO2 sea…

research product

The Low Dimensionality of Development

AbstractThe World Bank routinely publishes over 1500 “World Development Indicators” to track the socioeconomic development at the country level. A range of indices has been proposed to interpret this information. For instance, the “Human Development Index” was designed to specifically capture development in terms of life expectancy, education, and standard of living. However, the general question which independent dimensions are essential to capture all aspects of development still remains open. Using a nonlinear dimensionality reduction approach we aim to extract the core dimensions of development in a highly efficient way. We find that more than 90% of variance in the WDIs can be represen…

research product

Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks

Abstract The eddy covariance (EC) technique is used to measure the net ecosystem exchange (NEE) of CO2 between ecosystems and the atmosphere, offering a unique opportunity to study ecosystem responses to climate change. NEE is the difference between the total CO2 release due to all respiration processes (RECO), and the gross carbon uptake by photosynthesis (GPP). These two gross CO2 fluxes are derived from EC measurements by applying partitioning methods that rely on physiologically based functional relationships with a limited number of environmental drivers. However, the partitioning methods applied in the global FLUXNET network of EC observations do not account for the multiple co‐acting…

research product

Ranking drivers of global carbon and energy fluxes over land

The accurate estimation of carbon and heat fluxes at global scale is paramount for future policy decisions in the context of global climate change. This paper analyzes the relative relevance of potential remote sensing and meteorological drivers of global carbon and energy fluxes over land. The study is done in an indirect way via upscaling both Gross Primary Production (GPP) and latent energy (LE) using Gaussian Process regression (GPR). In summary, GPR is successfully compared to multivariate linear regression (RMSE gain of +4.17% in GPP and +7.63% in LE) and kernel ridge regression (+2.91% in GPP and +3.07% in LE). The best GP models are then studied in terms of explanatory power based o…

research product

Compensatory water effects link yearly global land CO2 sink changes to temperature

Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems1–3. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales3–14. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of…

research product

Discovering Differential Equations from Earth Observation Data

Modeling and understanding the Earth system is a constant and challenging scientific endeavour. When a clear mechanistic model is unavailable, complex or uncertain, learning from data can be an alternative. While machine learning has provided excellent methods for detection and retrieval, understanding the governing equations of the system from observational data seems an elusive problem. In this paper we introduce sparse regression to uncover a set of governing equations in the form of a system of ordinary differential equations (ODEs). The presented method is used to explicitly describe variable relations by identifying the most expressive and simplest ODEs explaining data to model releva…

research product

Advancing Deep Learning for Earth Sciences: From Hybrid Modeling to Interpretability

Machine learning and deep learning in particular have made a huge impact in many fields of science and engineering. In the last decade, advanced deep learning methods have been developed and applied to remote sensing and geoscientific data problems extensively. Applications on classification and parameter retrieval are making a difference: methods are very accurate, can handle large amounts of data, and can deal with spatial and temporal data structures efficiently. Nevertheless, several important challenges need still to be addressed. First, current standard deep architectures cannot deal with long-range dependencies so distant driving processes (in space or time) are not captured, and the…

research product

Deep learning and process understanding for data-driven Earth system science

Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales, for example. The next step will be a hybri…

research product

A unified vegetation index for quantifying the terrestrial biosphere

[EN] Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation biophysical and physiological parameters. The presented nonlinear generalization of the celebrated normalized difference vegetation index (NDVI) consistently improves accuracy in monitoring key parameters, such as leaf area index, gross prim…

research product

Global Groundwater-Vegetation Relations

Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater-vegetation interactions are poorly understood at the global scale. Using several high-resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two-thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture-limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, …

research product

A perspective on Gaussian processes for Earth observation

Earth observation (EO) by airborne and satellite remote sensing and in-situ observations play a fundamental role in monitoring our planet. In the last decade, machine learning and Gaussian processes (GPs) in particular has attained outstanding results in the estimation of bio-geo-physical variables from the acquired images at local and global scales in a time-resolved manner. GPs provide not only accurate estimates but also principled uncertainty estimates for the predictions, can easily accommodate multimodal data coming from different sensors and from multitemporal acquisitions, allow the introduction of physical knowledge, and a formal treatment of uncertainty quantification and error pr…

research product

Inferring causation from time series in earth system sciences

The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform causeme.net to close the gap between method users and developers.

research product