6533b852fe1ef96bd12aad09

RESEARCH PRODUCT

Advancing Deep Learning for Earth Sciences: From Hybrid Modeling to Interpretability

Gustau Camps-vallsMarkus ReichsteinXiao Xiang ZhuDevis Tuia

subject

Computer scienceEarth sciencehybrid modeling0211 other engineering and technologies02 engineering and technology010501 environmental sciencesSpace (commercial competition)01 natural sciencesData modelingInterpretable AIPredictive modelsLaboratory of Geo-information Science and Remote SensingMachine learningearth sciencesLaboratorium voor Geo-informatiekunde en Remote Sensing021101 geological & geomatics engineering0105 earth and related environmental sciencesInterpretabilitybusiness.industryDeep learningPhysicsSIGNAL (programming language)Data modelsdeep learningComputational modelingDeep learningEarthRemote sensingPE&RCartificial intelligenceTemporal databaseEnvironmental sciencesCausalityArtificial intelligencebusiness

description

Machine learning and deep learning in particular have made a huge impact in many fields of science and engineering. In the last decade, advanced deep learning methods have been developed and applied to remote sensing and geoscientific data problems extensively. Applications on classification and parameter retrieval are making a difference: methods are very accurate, can handle large amounts of data, and can deal with spatial and temporal data structures efficiently. Nevertheless, several important challenges need still to be addressed. First, current standard deep architectures cannot deal with long-range dependencies so distant driving processes (in space or time) are not captured, and they cannot cope with non-Euclidean spaces efficiently. Second, as other data-driven techniques, deep learning models do not necessarily respect physical or causal relations. Finally, deep learning models are still obscure and resistant to interpretability. Advances are needed to cope with arbitrary signal structures and data relations, physical plausibility and interpretability. This paper discusses about ways forward to develop new DL methods for the Earth sciences in all three directions.

https://elib.dlr.de/139442/