0000000000255683

AUTHOR

M. Teresa Picher

Modeling for the active site nitrate reductase. Oxidation of the complex [MovO(O2CC(S) CH3Ph)2]− by nitrate and nitrite in methanol

Abstract Under acid conditions the [MoVIO2(O2CC(S)CH1Ph)2]2 reacts with thiols to yield the monomeric [MoVO(O2CC(S)CH3Ph)2] and disulfide. The reduced complex [MoVO(O2CC(S)CH3Ph)2]− can react with NO3− and NO2− in a one-electron step yeilding respectively NO2 and NO and the original molybdenum (VI)-dioxo complex. The experimental pseudo-first-order rate constant with respect to the Mo(V) complex at 25°C was found to be kobs=2.3×10−4s−1 for NO3− and kobs=1.0×10−2 for NO2−. Oxo transfers to and from the substrate have been coupled to produce a catalytic system which turns over the reaction RSH+(No3− or NO2−)+H+a 1 2 [ RS ] 2 +( NO ] 2 or NO )+ H 2 O , in which thiols, NO1− and NO2− serve as a…

research product

A DFT study of the Huisgen 1,3-dipolar cycloaddition between hindered thiocarbonyl ylides and tetracyanoethylene

Abstract The mechanism for the 1,3-dipolar cycloaddition between the hindered thiocarbonyl ylide 1 and tetracyanoethylene 2 has been studied at the B3LYP/6-31G ∗ level. Formation of the [3+2] cycloadduct 4 takes place through a stepwise mechanism that is initiated by the nucleophilic attack of the thiocarbonyl ylide 1 to the ethylene derivative 2 to give a zwitterionic intermediate IN . The subsequent cyclization of IN yields a seven-membered cyclic ketene imine 6 , which equilibrates with the thermodynamically more stable [3+2] cycloadduct 4 . The computed free energies are in agreement with the experimental outcomes.

research product

Synthesis and characterization of molybdenum(VI)-dioxo complexes containing both coordinated thiolate and carboxylate groups. Reactions with their own free ligands

Abstract The synthesis, characterization and spectroscopic properties of a group of Mo(VI) complexes having thiocarboxylate ligands of type [MoVIO2(O2CC(S)MePh-X)2]2 have been reported (X = H, p-Me, p-Cl). The peak potential for the Mo(VI) reduction increasing according to the electron-donor ability of X (Me > H > Cl). Reaction of these Mo(VI) complexes with their own free ligands has been studied by ESR and UV-Vis spectroscopy, yielding the monomeric [MoVO(O2CC(S)MePh-X)2]− as unique complex products. The kinetic study of this oxidation reaction has also been investigated.

research product

[MoO2(SCPh2CO2)2]2− and [MoO(SCPh2CO2)2]− anion complexes. A theoretical structure characterization

Abstract Geometry optimization of [MoO 2 (SCH 2 CO 2 ) 2 ] 2− and [MoO(SCH 2 CO 2 ) 2 ] − systems as models of [MoO 2 (SCPh 2 CO 2 ) 2 ] 2− and [MoO(SCPh 2 CO 2 ) 2 ] − anion complexes have been carried out at STO-3G, 3-21G, LANL1MB and LANL2DZ basis set levels. A comparison of the theoretical results and X-ray experimental data has been performed. STO-3G minimal basis set produces the best geometrical agreement, in particular the distances and orientations of the different ligands linked to molybdenum transition metal. A large structural overlap with STO-3G optimized geometry and X-ray data has been found for the [MoO 2 (SCPh 2 CO 2 ) 2 ] 2− and [MoO(SCPh 2 CO 2 ) 2 ] − anion complexes.

research product

The tandem Diels-Alder reaction between acetylenedicarboxyaldehyde and N,N'-dipyrrolylmethane. An ab initio study of the molecular mechanisms

Abstract An extensive exploration at RHF/3-21G and RHF/6-31G ∗ levels of the potential energy surface for the tandem cycloaddition of acetylenedicarboxyaldehyde to N,N'-dipyrrolylmethane allows us to characterize the reaction pathways and the associated stationary points. The formation of the pincer and/or domino adducts can be described as a stepwise mechanism. The first step, associated with an intermolecular [4 + 2] cycloaddition, is the rate determining step and an azanorbornadiene intermediate is obtained. The second step is an intramolecular [4 + 2] cycloaddition. The formation of the pincer adduct is the step which kinetically controls the global process, due to the low barrier heigh…

research product

Towards an Understanding of the Polar Diels–Alder Reactions of Nitrosoalkenes with Enamines: A Theoretical Study

The polar Diels–Alder reactions of nitrosoalkenes with enamines have been studied using DFT methods at the B3LYP/6-31G* level of theory. These Diels–Alder reactions are characterized by a nucleophilic attack of the enamine at the conjugated position of the nitrosoalkene with concomitant ring-closure. The reactions present a total regioselectivity and a large endo selectivity. The analysis, based on the global electrophilicity of the reagents in the ground state, the natural bond orbital (NBO), and the topological analysis of the electron localization function (ELF) in the endo transition state (TS) and “halfway” along the IRC between the TS and cycloadduct, correctly explain the polar natur…

research product

The domino reaction between 4,6-dinitrobenzofuroxan and cyclopentadiene. Insights on the nature of the molecular mechanism

Abstract The molecular mechanism of the domino reaction between 4,6-dinitrobenzofuroxan, 1 , and cyclopentadiene, Cp, to give the adduct 11 is examined through density functional theory (DFT) calculations at B3LYP/6-31G* level. This domino reaction comprises two consecutive formally [4+2] cycloadditions. The first one is a two-center addition initialized by the nucleophilic attack of Cp to the more electrophilic center of 1 . The subsequent cyclization can take place along two competitive channels associated to the formation of a second C–C bond yielding the formally [2+4] cycloadduct 9 , or a C–O bond yielding the formally [4+2] cycloadduct 10 . The second cycloaddition is a stepwise proce…

research product

PM3 study of the domino reaction of nitroalkenes with silyl enol ethers

research product

Ab Initio Study of Stereo- and Regioselectivity in the Diels−Alder Reaction between 2-Phenylcyclopentadiene and α-(Methylthio)acrylonitrile

Ab initio molecular orbital calculations have been used to investigate the Diels−Alder reaction between 2-phenylcyclopentadiene and α-(methylthio)acrylonitrile. Geometry optimizations were performed with the RHF/3-21G, RHF/3-21G*, and RHF/6-31G* calculations while the correlation energy has been calculated at MP2 and MP3 levels. Four asynchronous transition structures corresponding to the formation of different stereoisomers and regioisomers associated with the four reaction channels have been located. The observed endo/exo stereoselectivity and para/meta regioselectivity are correctly described at all levels of calculation, and the calculated activation energies reflect accurately the rela…

research product

Theoretical Study of the Reaction of Dimethyl Acetylenedicarboxylate with 1-Methyl-2-(1-substituted vinyl)pyrroles

Abstract A theoretical study of the transition structure for the electrophilic attack step of the 1-methyl-2-vinylpyrrole to dimethyl acetylenedicarboxylate is reported with analytical gradients at AM1 and PM3 semi-empirical levels and ab initio at 3-21G level. The geometry, electronic structure, and vector components are qualitatively computer level and model independent The competition of the Michael addition reactions and Diels-Alder reactions of 1-methyl-2-(1-substituted vinyl)pyrroles with dimethyl acetylenedicarboxylate has been studied at the PM3 semi-empirical level.

research product

1,3-Dipolar cycloadditions of electrophilically activated benzonitrile N-oxides. Polar cycloaddition versus oxime formation.

The reactions of electrophilically activated benzonitrile N-oxides (BNOs) toward 3-methylenephthalimidines (MPIs) have been studied using density functional theory (DFT) at the B3LYP/6-31G* level. For these reactions, two different channels allowing the formation of the [3 + 2] cycloadducts and two isomeric (E)- and (Z)-oximes have been characterized. The 1,3-dipolar cycloadditions take place along concerted but highly asynchronous transition states, while formation of the oximes is achieved through a stepwise mechanism involving zwitterionic intermediates. Both reactions are initiated by the nucleophilic attack of the methylene carbon of the MPIs to the carbon atom of the electrophilically…

research product

Toward an understanding of the unexpected regioselective hetero-Diels-Alder reactions of asymmetric tetrazines with electron-rich ethylenes: a DFT study.

The regioselective hetero-Diels-Alder (HDA) reaction of asymmetric tetrazines (TTZs) with electron-rich (ER) ethylenes has been studied with use of DFT methods at the B3LYP/6-31G* level of theory. The reaction is a domino process that comprises three consecutive reactions: (i) a HDA reaction between the TTZ and the ER ethylene; (ii) a retro-Diels-Alder reaction with loss of nitrogen; and (iii) a beta-hydrogen elimination with formation of the final pyridazines. The first polar HDA reaction, which is associated to the nucleophilic attack of the ER ethylene to the electrophilically activated TTZ, is the rate and regioselectivity determining step of the domino process. The unexpected regiosele…

research product

Understanding the Nature of the Molecular Mechanisms Associated with the Competitive Lewis Acid Catalyzed[4+2] and[4+3] Cycloadditions between Arylidenoxazolone Systems and Cyclopentadiene: A DFT Analysis

The molecular mechanisms of the reactions between aryliden-5(4H)-oxazolone 1, and cyclopentadiene (Cp), in presence of Lewis acid (LA) catalyst to obtain the corresponding [4+2] and [4+3] cycloadducts are examined through density functional theory (DFT) calculations at the B3LYP/6-31G* level. The activation effect of LA catalyst can be reached by two ways, that is, interaction of LA either with carbonyl or carboxyl oxygen atoms of 1 to render [4+2] or [4+3] cycloadducts. The endo and exo [4+2] cycloadducts are formed through a highly asynchronous concerted mechanism associated to a Michael-type addition of Cp to the beta-conjugated position of alpha,beta-unsaturated carbonyl framework of 1.…

research product