6533b872fe1ef96bd12d30fd
RESEARCH PRODUCT
Understanding the Nature of the Molecular Mechanisms Associated with the Competitive Lewis Acid Catalyzed[4+2] and[4+3] Cycloadditions between Arylidenoxazolone Systems and Cyclopentadiene: A DFT Analysis
M. Teresa PicherManuel ArnóLuis R. DomingoJuan Andressubject
Reaction mechanismCyclopentadieneConcerted reactionStereochemistryOrganic ChemistryGeneral ChemistryCatalysisCycloadditionAdductchemistry.chemical_compoundNucleophilechemistryCascade reactionLewis acids and basesdescription
The molecular mechanisms of the reactions between aryliden-5(4H)-oxazolone 1, and cyclopentadiene (Cp), in presence of Lewis acid (LA) catalyst to obtain the corresponding [4+2] and [4+3] cycloadducts are examined through density functional theory (DFT) calculations at the B3LYP/6-31G* level. The activation effect of LA catalyst can be reached by two ways, that is, interaction of LA either with carbonyl or carboxyl oxygen atoms of 1 to render [4+2] or [4+3] cycloadducts. The endo and exo [4+2] cycloadducts are formed through a highly asynchronous concerted mechanism associated to a Michael-type addition of Cp to the beta-conjugated position of alpha,beta-unsaturated carbonyl framework of 1. Coordination of LA catalyst to the carboxyl oxygen yields a highly functionalized compound, 3, through a domino reaction. For this process, the first reaction is a stepwise [4+3] cycloaddition which is initiated by a Friedel-Crafts-type addition of the electrophilically activated carbonyl group of 1 to Cp and subsequent cyclization of the corresponding zwitterionic intermediate to yield the corresponding [4+3] cycloadduct. The next rearrangement is the nucleophilic trapping of this cycloadduct by a second molecule of Cp to yield the final adduct 3. A new reaction pathway for the [4+3] cycloadditions emerges from the present study.
year | journal | country | edition | language |
---|---|---|---|---|
2004-10-04 | Chemistry - A European Journal |