0000000000264233
AUTHOR
Matteo Dalla Riva
Dependence of the layer heat potentials upon support perturbations
We prove that the integral operators associated with the layer heat potentials depend smoothly upon a parametrization of the support of integration. The analysis is carried out in the optimal H\"older setting.
A tribute to Massimo Lanza de Cristoforis
It is with great pleasure that we dedicate the special issue Functional Analytic Methods in Partial Differential Equations of Complex Variables and Elliptic Equations to the 60th birthday of Massim...
Moderately close Neumann inclusions for the Poisson equation
We investigate the behavior of the solution of a mixed problem for the Poisson equation in a domain with two moderately close holes. If ϱ1 and ϱ2 are two positive parameters, we define a perforated domain Ω(ϱ1,ϱ2) by making two small perforations in an open set: the size of the perforations is ϱ1ϱ2, while the distance of the cavities is proportional to ϱ1. Then, if r∗ is small enough, we analyze the behavior of the solution for (ϱ1,ϱ2) close to the degenerate pair (0,r∗). Copyright © 2016 John Wiley & Sons, Ltd.
Global representation and multiscale expansion for the Dirichlet problem in a domain with a small hole close to the boundary
For each pair (Formula presented.) of positive parameters, we define a perforated domain (Formula presented.) by making a small hole of size (Formula presented.) in an open regular subset (Formula presented.) of (Formula presented.) ((Formula presented.)). The hole is situated at distance (Formula presented.) from the outer boundary (Formula presented.) of the domain. Thus, when (Formula presented.) both the size of the hole and its distance from (Formula presented.) tend to zero, but the size shrinks faster than the distance. Next, we consider a Dirichlet problem for the Laplace equation in the perforated domain (Formula presented.) and we denote its solution by (Formula presented.) Our ai…
Multi-parameter analysis of the obstacle scattering problem
Abstract We consider the acoustic field scattered by a bounded impenetrable obstacle and we study its dependence upon a certain set of parameters. As usual, the problem is modeled by an exterior Dirichlet problem for the Helmholtz equation Δu + k 2 u = 0. We show that the solution u and its far field pattern u ∞ depend real analytically on the shape of the obstacle, the wave number k, and the Dirichlet datum. We also prove a similar result for the corresponding Dirichlet-to-Neumann map.
A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary
We study the Dirichlet problem in a domain with a small hole close to the boundary. To do so, for each pair $\boldsymbol\varepsilon = (\varepsilon_1, \varepsilon_2 )$ of positive parameters, we consider a perforated domain $\Omega_{\boldsymbol\varepsilon}$ obtained by making a small hole of size $\varepsilon_1 \varepsilon_2 $ in an open regular subset $\Omega$ of $\mathbb{R}^n$ at distance $\varepsilon_1$ from the boundary $\partial\Omega$. As $\varepsilon_1 \to 0$, the perforation shrinks to a point and, at the same time, approaches the boundary. When $\boldsymbol\varepsilon \to (0,0)$, the size of the hole shrinks at a faster rate than its approach to the boundary. We denote by $u_{\bolds…
Local uniqueness of the solutions for a singularly perturbed nonlinear nonautonomous transmission problem
Abstract We consider the Laplace equation in a domain of R n , n ≥ 3 , with a small inclusion of size ϵ . On the boundary of the inclusion we define a nonlinear nonautonomous transmission condition. For ϵ small enough one can prove that the problem has solutions. In this paper, we study the local uniqueness of such solutions.
On vibrating thin membranes with mass concentrated near the boundary: an asymptotic analysis
We consider the spectral problem \begin{equation*} \left\{\begin{array}{ll} -\Delta u_{\varepsilon}=\lambda(\varepsilon)\rho_{\varepsilon}u_{\varepsilon} & {\rm in}\ \Omega\\ \frac{\partial u_{\varepsilon}}{\partial\nu}=0 & {\rm on}\ \partial\Omega \end{array}\right. \end{equation*} in a smooth bounded domain $\Omega$ of $\mathbb R^2$. The factor $\rho_{\varepsilon}$ which appears in the first equation plays the role of a mass density and it is equal to a constant of order $\varepsilon^{-1}$ in an $\varepsilon$-neighborhood of the boundary and to a constant of order $\varepsilon$ in the rest of $\Omega$. We study the asymptotic behavior of the eigenvalues $\lambda(\varepsilon)$ and the eige…
Existence results for a nonlinear nonautonomous transmission problem via domain perturbation
In this paper we study the existence and the analytic dependence upon domain perturbation of the solutions of a nonlinear nonautonomous transmission problem for the Laplace equation. The problem is defined in a pair of sets consisting of a perforated domain and an inclusion whose shape is determined by a suitable diffeomorphism $\phi$. First we analyse the case in which the inclusion is a fixed domain. Then we will perturb the inclusion and study the arising boundary value problem and the dependence of a specific family of solutions upon the perturbation parameter $\phi$.
Series expansion for the effective conductivity of a periodic dilute composite with thermal resistance at the two-phase interface
We study the asymptotic behavior of the effective thermal conductivity of a periodic two-phase dilute composite obtained by introducing into an infinite homogeneous matrix a periodic set of inclusions of a different material, each of them of size proportional to a positive parameter ?. We assume that the normal component of the heat flux is continuous at the two-phase interface, while we impose that the temperature field displays a jump proportional to the normal heat flux. For ? small, we prove that the effective conductivity can be represented as a convergent power series in ? and we determine the coefficients in terms of the solutions of explicit systems of integral equations.