0000000000264333

AUTHOR

Jean-christophe Bourdon

0000-0003-4623-9386

DNA polymeraseθ up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability

“Replicative stress” is one of the main factors underlying neoplasia from its early stages. Genes involved in DNA synthesis may therefore represent an underexplored source of potential prognostic markers for cancer. To this aim, we generated gene expression profiles from two independent cohorts (France,n= 206; United Kingdom,n= 117) of patients with previously untreated primary breast cancers. We report here that among the 13 human nuclear DNA polymerase genes, DNA Polymerase θ (POLQ) is the only one significantly up-regulated in breast cancer compared with normal breast tissues. Importantly,POLQup-regulation significantly correlates with poor clinical outcome (4.3-fold increased risk of de…

research product

Δ133p53α enhances metabolic and cellular fitness of TCR-engineered T cells and promotes superior antitumor immunity

BackgroundTumor microenvironment-associated T cell senescence is a key limiting factor for durable effective cancer immunotherapy. A few studies have demonstrated the critical role of the tumor suppressor TP53-derived p53 isoforms in cellular senescence process of non-immune cells. However, their role in lymphocytes, in particular tumor-antigen (TA) specific T cells remain largely unexplored.MethodsHuman T cells from peripheral blood were retrovirally engineered to coexpress a TA-specific T cell receptor and the Δ133p53α-isoform, and characterized for their cellular phenotype, metabolic profile and effector functions.ResultsPhenotypic analysis of Δ133p53α-modified T cells revealed a marked …

research product