6533b829fe1ef96bd1289978

RESEARCH PRODUCT

Δ133p53α enhances metabolic and cellular fitness of TCR-engineered T cells and promotes superior antitumor immunity

Borhane GuezguezAlexander LangMohamed H.s. AwwadJean-christophe BourdonMatthias TheobaldEdite Antunes FerreiraHakim EchchannaouiMarkus MunderKevin Jan LegschaDanuta GaletzkaGigi Nu Hoang Quy TonMichael HundemerAntonios Chamoun

subject

0301 basic medicineMaleCancer Researchmedicine.medical_treatmentT cellT-LymphocytesImmunologyReceptors Antigen T-Cell2436receptorsBiologycell engineeringadoptive03 medical and health sciencesMice0302 clinical medicineantigenTIGITCancer immunotherapyAntigenCell Line TumorNeoplasmsmedicineTumor MicroenvironmentImmunology and AllergyAnimalsHumans1506RC254-282PharmacologyImmune Cell Therapies and Immune Cell EngineeringCD28Neoplasms. Tumors. Oncology. Including cancer and carcinogensT lymphocyteImmunotherapycostimulatory and inhibitory T-cell receptorsCell biology030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisMolecular MedicineimmunotherapyCD8

description

BackgroundTumor microenvironment-associated T cell senescence is a key limiting factor for durable effective cancer immunotherapy. A few studies have demonstrated the critical role of the tumor suppressor TP53-derived p53 isoforms in cellular senescence process of non-immune cells. However, their role in lymphocytes, in particular tumor-antigen (TA) specific T cells remain largely unexplored.MethodsHuman T cells from peripheral blood were retrovirally engineered to coexpress a TA-specific T cell receptor and the Δ133p53α-isoform, and characterized for their cellular phenotype, metabolic profile and effector functions.ResultsPhenotypic analysis of Δ133p53α-modified T cells revealed a marked reduction of the T-cell inhibitory molecules (ie, CD160 and TIGIT), a lower frequency of senescent-like CD57+ and CD160+ CD8+ T cell populations, and an increased number of less differentiated CD28+ T cells. Consistently, we demonstrated changes in the cellular metabolic program toward a quiescent T cell state. On a functional level, Δ133p53α-expressing T cells acquired a long-term proliferative capacity, showed superior cytokine secretion and enhanced tumor-specific killing in vitro and in mouse tumor model. Finally, we demonstrated the capacity of Δ133p53α to restore the antitumor response of senescent T cells isolated from multiple myeloma patients.ConclusionThis study uncovered a broad effect of Δ133p53α isoform in regulating T lymphocyte function. Enhancing fitness and effector functions of senescent T cells by modulation of p53 isoforms could be exploited for future translational research to improve cancer immunotherapy and immunosenescence-related diseases.

10.1136/jitc-2020-001846https://jitc.bmj.com/content/9/6/e001846.full