0000000000266086
AUTHOR
G. Ickert
Thermonuclear reactionS30(p,γ)Cl31studied via Coulomb breakup ofCl31
Coulomb breakup at high energy in inverse kinematics of proton-rich Cl-31 was used to constrain the thermonuclear S-30(p,gamma)Cl-31 capture reaction rate under typical Type I x-ray burst conditions. This reaction is a bottleneck during rapid proton-capture nucleosynthesis (rp process), where its rate depends predominantly on the nuclear structure of Cl-31. Two low-lying states just above the proton-separation threshold of S-p = 296( 50) keV in Cl-31 have been identified experimentally using the (RB)-B-3-LAND setup at the GSI Helmholtzzentrum fur Schwerionenforschung GmbH. Both states are considered to play a key role in the thermonuclear S-30( p,gamma)Cl-31 capture reaction. Excitation ene…
Lithium isotopes beyond the drip line
The unbound isotopes 10Li, 12Li and 13Li have been observed after nucleon-knockout reactions at relativistic energies with 11Li and 14Be beams impinging on a liquid hydrogen target. The channels , and were analysed in the ALADIN-LAND setup at GSI. The 10Li data confirm earlier findings, while the 12Li and 13Li nuclei were observed for the first time. The relative-energy spectrum shows that the ground state of 12Li can be described as a virtual s-state with a scattering length of -13.7(1.6) fm. A broad energy spectrum was found for the channel. Based on the assumption that the relative-energy spectrum is dominated by a correlated background presumably stemming from initial correlations in th…
A large-area scintillating fibre detector for relativistic heavy ions
Abstract A scintillating fibre detector for relativistic heavy ions with an active area of 50 × 50 cm 2 has been developed and was tested with various ion beams (1 ≤ Z ≤ 92). At count rates of up to 10 5 particles/s, the position resolution was found to be determined by the fibre width of 1 mm; depending on the nuclear charge of the beam, efficiencies between 89% and 100% and time resolutions between 800 and 200 ps (FWHM) were obtained.
Measurement of the92,93,94,100Mo(γ,n) reactions by Coulomb Dissociation
6th Nuclear Physics in Astrophysics Conference (NPA), Lisbon, Portugal, 19 May 2013 - 24 May 2013; Journal of physics / Conference Series 665, 012034 (2016). doi:10.1088/1742-6596/665/1/012034
The HypHI Phase 0 experiment
10th International Conference on Hypernuclear and Strange Particle Physics -- SEP 14-18, 2009 -- Tokai, JAPAN
A large area detector for high-energy neutrons
Abstract We present design studies, results of test measurements, and Monte Carlo simulations which served as a basis for the realization of a large area neutron detector (LAND). It has a front area of 2m×2m and a depth of 1 m, and features a multilayer structure of passive converter and active scintillator material. The detector is subdivided in independently operating paddles which allow time-of-flight and position measurement. An energy resolution of ΔT n / T n =5.3% for a flight path of 15 m and an overall detection efficiency of ϵ ≈ 1 is anticipated for neutrons with T n ≈ 1 GeV. The operation of LAND at the SIS facility of GSI is described.
Hypernuclear production cross section in the reaction of 6Li + 12C at 2 A GeV
WOS: 000358624800021
Hypernuclear spectroscopy of products from Li-6 projectiles on a carbon target at 2 A GeV
WOS: 000322848900009
First feasibility study for EXL prototype detectors at the ESR and detector simulations
This contribution presents some results from the first feasibility measurement performed at GSI using a 350 MeV/nucleon 136 Xe beam and a Hydrogen gas-jet target. In this feasibility study, one element of every possible detection part of the future EXL detection system was investigated. In addition, simulation results for EXL setup will be presented.
Production of hypernuclei in peripheral HI collisions: The HypHI project at GSI
ECT Workshop on Strange Hadronic Matter -- SEP 26-30, 2011 -- Trento, ITALY
The FIRST experiment at GSI
The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at the SIS accelerator of GSI laboratory in Darmstadt has been designed for the measurement of ion fragmentation cross-sections at different angles and energies between 100 and 1000 MeV/nucleon. Nuclear fragmentation processes are relevant in several fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The start of the scientific program of the FIRST experiment was on summer 2011 and was focused on the measurement of 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) graphite target. The detector is partly based on an alread…
FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy
International audience; Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the …