0000000000266377

AUTHOR

M. Teresa Pastor

Combinatorial chemistry of  -hairpins

Combinatorial chemistry is expanding rapidly both in terms of chemistry development and application to the synthesis of compound libraries for lead discovery and optimization. Combinatorial technologies continue evolving and developing, in fact they are being used as basic research tools in different fields that include peptide/protein folding. This review examines the use of combinatorial chemistry in the design of peptides and protein domains that adopt beta-sheet conformations. In particular, the use of conformationally restricted peptide libraries has allowed the identification of linear peptides that are folded in a beta-hairpin structure in plain aqueous solutions.

research product

Design of a bivalent peptide with two independent elements of secondary structure able to fold autonomously.

This article describes a strategy to develop, starting from a de novo design, bivalent peptides containing two different (alpha-helix and beta-hairpin) and independent secondary-structure elements. The design was based on the use of conformationally restricted peptide libraries. Structural characterization by NMR revealed that the peptides were stable and did not show any long-range NOE interactions between the N-terminal beta-hairpin and the C-terminal alpha-helix. These results suggest that the two elements of secondary structure are stable and well folded. Copyright (C) 2008 European Peptide Society and John Wiley & Sons. Ltd.

research product

Design of bioactive and structurally well-defined peptides from conformationally restricted libraries

Libraries of peptides and proteins can be categorized according to the function of their origin in gene- and synthetic-based libraries. Both kinds of libraries have the potential to generate the same grade of molecular diversity, although the limits imposed by the synthetic methods have been lately a matter of discussion. However, the use of synthetic strategies allows incorporation of non-natural amino acids. The development of canfonnallonally restricted synthetic peptide libraries can be considered as a point of convergence of the two methodologies. In these libraries the diversity is grafted into scaffolds that are defined by stable secondary structural motifs, and the deconvolution pro…

research product