0000000000267060
AUTHOR
Julio D. Rossi
A Nonlocal Mean Curvature Flow
Consider a family { Γt}t≥0 of hypersurfaces embedded in \(\mathbb {R}^N\) parametrized by time t. Assume that each Γt = ∂Et, the boundary of a bounded open set Et in \(\mathbb {R}^N\).
The best constant for the Sobolev trace embedding from into
Abstract In this paper we study the best constant, λ 1 ( Ω ) for the trace map from W 1 , 1 ( Ω ) into L 1 ( ∂ Ω ) . We show that this constant is attained in BV ( Ω ) when λ 1 ( Ω ) 1 . Moreover, we prove that this constant can be obtained as limit when p ↘ 1 of the best constant of W 1 , p ( Ω ) ↪ L p ( ∂ Ω ) . To perform the proofs we will look at Neumann problems involving the 1-Laplacian, Δ 1 ( u ) = div ( Du / | Du | ) .
Local and nonlocal weighted pLaplacian evolution equations with Neumann boundary conditions
In this paper we study existence and uniqueness of solutions to the local diffusion equation with Neumann boundary conditions and a bounded nonhomogeneous diffusion coefficient g ≥ 0, {ut = div (g|∇u|p-2∇u) in ]0; T[×Ωg|∇u|p-2u·n = 0 on ]0; T[×∂Ω; for 1 ≤ p < ∞. We show that a nonlocal counterpart of this diffusion problem is ut(t; x)= ∫ω J(x-y)g(x+y/2)|u(t; y)-u(t; x)| p-2 (u(t; y)-u(t; x)) dy in ]0; T[× Ω,where the diffusion coefficient has been reinterpreted by means of the values of g at the point x+y/2 in the integral operator. The fact that g ≥ 0 is allowed to vanish in a set of positive measure involves subtle difficulties, specially in the case p = 1.
Asymptotic mean value formulas for parabolic nonlinear equations
In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from a probabilistic point of view in terms of dynamic programming principles for certain two-player, zero-sum games. peerReviewed
Asymptotic Mean-Value Formulas for Solutions of General Second-Order Elliptic Equations
Abstract We obtain asymptotic mean-value formulas for solutions of second-order elliptic equations. Our approach is very flexible and allows us to consider several families of operators obtained as an infimum, a supremum, or a combination of both infimum and supremum, of linear operators. The families of equations that we consider include well-known operators such as Pucci, Issacs, and k-Hessian operators.
Nonlocal Cheeger and Calibrable Sets
Given a non-null, measurable and bounded set \(\Omega \subset \mathbb {R}^N\), we define its J-Cheeger constant
Asymptotic $C^{1,γ}$-regularity for value functions to uniformly elliptic dynamic programming principles
In this paper we prove an asymptotic C1,γ-estimate for value functions of stochastic processes related to uniformly elliptic dynamic programming principles. As an application, this allows us to pass to the limit with a discrete gradient and then to obtain a C1,γ-result for the corresponding limit PDE. peerReviewed
A Monge-Kantorovich mass transport problem for a discrete distance
This paper is concerned with a Monge-Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when rescaling the step distance, approximate the classical problem. In particular we obta…
The Heat Content for Nonlocal Diffusion with Non-singular Kernels
Abstract We study the behavior of the heat content for a nonlocal evolution problem.We obtain an asymptotic expansion for the heat content of a set D, defined as ℍ D J ( t ) := ∫ D u ( x , t ) 𝑑 x ${\mathbb{H}_{D}^{J}(t):=\int_{D}u(x,t)\,dx}$ , with u being the solution to u t = J ∗ u - u ${u_{t}=J\ast u-u}$ withinitial condition u 0 = χ D ${u_{0}=\chi_{D}}$ . This expansion is given in terms of geometric values of D. As a consequence, we obtain that ℍ D J ( t ) = | D | - P J ( D ) t + o ( t ) ${\mathbb{H}^{J}_{D}(t)=\lvert D\rvert-P_{J}(D)t+o(t)}$ as t ↓ 0 ${t\downarrow 0}$ .We also recover the usual heat content for the heat equation when we rescale the kernel J in an appro…
Porous medium equation with absorption and a nonlinear boundary condition
where is a bounded domain with smooth boundary, @=@ is the outer normal derivative, m ? 1; p; and q are positive parameters and u0 is in L∞( ). Problems of this form arise in mathematical models in a number of areas of science, for instance, in models for gas or :uid :ow in porous media [3] and for the spread of certain biological populations [13]. In the semilinear case (that is for m=1), there is an extensive literature about global existence and blow-up results for this type of problems, see among others, [5,9,16] and the literature therein. For the degenerate case (that is for m = 1), with a nonlinear boundary condition, local existence and uniqueness of weak solutions which are limit o…
On the best Lipschitz extension problem for a discrete distance and the discrete ∞-Laplacian
Abstract This paper concerns the best Lipschitz extension problem for a discrete distance that counts the number of steps. We relate this absolutely minimizing Lipschitz extension with a discrete ∞-Laplacian problem, which arises as the dynamic programming formula for the value function of some e -tug-of-war games. As in the classical case, we obtain the absolutely minimizing Lipschitz extension of a datum f by taking the limit as p → ∞ in a nonlocal p -Laplacian problem.
Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations
Abstract In this paper we approximate a Kantorovich potential and a transport density for the mass transport problem of two measures (with the transport cost given by a Finsler distance), by taking limits, as p goes to infinity, to a family of variational problems of p-Laplacian type. We characterize the Euler–Lagrange equation associated to the variational Kantorovich problem. We also obtain different characterizations of the Kantorovich potentials and a Benamou–Brenier formula for the transport problem.
Nonlocal Isoperimetric Inequality
For the nonlocal perimeter, there is also an isoperimetric inequality, and here the main hypothesis used on J is that it is radially nonincreasing.
Nonlocal Heat Content
The heat content of a Borel measurable set \(D \subset \mathbb {R}^N\) at time t is defined by M. van der Berg in [69] (see also [70]) as: $$\displaystyle \mathbb {H}_D(t) = \int _D T(t) {\chi }_D (x) dx, $$ with (T(t))t≥0 being the heat semigroup in \(L^2(\mathbb {R}^N)\). Therefore, the heat content represents the amount of heat in D at time t if in D the initial temperature is 1 and in \(\mathbb {R}^N \setminus D\) the initial temperature is 0.
Anisotropic -Laplacian equations when goes to
Abstract In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p -Laplacian equation with respect to a group of variables and as the q -Laplacian equation with respect to the other variables ( 1 p q ), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1 , showing that they converge to a function u , which is almost everywhere finite, regardless of the size of the datum f . Moreover, we prove that this u is the unique solution of a limit problem having the 1-Laplacian operator with respect to the firs…
Mass transport problems for the Euclidean distance obtained as limits of p-Laplacian type problems with obstacles
In this paper we analyze a mass transportation problem that consists in moving optimally (paying a transport cost given by the Euclidean distance) an amount of a commodity larger than or equal to a fixed one to fulfil a demand also larger than or equal to a fixed one, with the obligation of paying an extra cost of −g1(x) for extra production of one unit at location x and an extra cost of g2(y) for creating one unit of demand at y. The extra amounts of mass (commodity/demand) are unknowns of the problem. Our approach to this problem is by taking the limit as p→∞ to a double obstacle problem (with obstacles g1, g2) for the p-Laplacian. In fact, under a certain natural constraint on the extra …
Discontinuous Gradient Constraints and the Infinity Laplacian
Motivated by tug-of-war games and asymptotic analysis of certain variational problems, we consider a gradient constraint problem involving the infinity Laplace operator. We prove that this problem always has a solution that is unique if a certain regularity condition on the constraint is satisfied. If this regularity condition fails, then solutions obtained from game theory and $L^p$-approximation need not coincide.
A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u) with homogeneous Neumann boundary conditions. We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L∞ (0, T ; Lp (Ω)) to the solution of the p-Laplacian with homogeneous Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous t…
Nonlocal Minimal Surfaces and Nonlocal Curvature
Recall that if a set E has minimal local perimeter in a bounded set Ω, then it has zero mean curvature at each point of ∂E ∩ Ω (see [51]), and the equation that says that the curvature is equal to zero is the Euler–Lagrange equation associated to the minimization of the perimeter of a set.