6533b861fe1ef96bd12c582a
RESEARCH PRODUCT
A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
Fuensanta AndreuJulián ToledoJosé M. MazónJulio D. Rossisubject
Neumann boundary conditionsMathematics(all)Diffusion equationApplied MathematicsGeneral MathematicsNonlocal diffusionMathematical analysisp-LaplacianFlow (mathematics)Neumann boundary conditionp-LaplacianInitial value problemUniquenessBoundary value problemCalculus of variationsTotal variation flowMathematicsdescription
In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u) with homogeneous Neumann boundary conditions. We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L∞ (0, T ; Lp (Ω)) to the solution of the p-Laplacian with homogeneous Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous to the total variation flow, is also analyzed. Finally, we study the asymptotic behavior of the solutions as t goes to infinity, showing the convergence to the mean value of the initial condition. © 2008 Elsevier Masson SAS. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
year | journal | country | edition | language |
---|---|---|---|---|
2008-08-01 | Journal de Mathématiques Pures et Appliquées |