0000000000048590
AUTHOR
José M. Mazón
The Cauchy problem for linear growth functionals
In this paper we are interested in the Cauchy problem $$ \left\{ \begin{gathered} \frac{{\partial u}}{{\partial t}} = div a (x, Du) in Q = (0,\infty ) x {\mathbb{R}^{{N }}} \hfill \\ u (0,x) = {u_{0}}(x) in x \in {\mathbb{R}^{N}}, \hfill \\ \end{gathered} \right. $$ (1.1) where \( {u_{0}} \in L_{{loc}}^{1}({\mathbb{R}^{N}}) \) and \( a(x,\xi ) = {\nabla _{\xi }}f(x,\xi ),f:{\mathbb{R}^{N}}x {\mathbb{R}^{N}} \to \mathbb{R} \)being a function with linear growth as ‖ξ‖ satisfying some additional assumptions we shall precise below. An example of function f(x, ξ) covered by our results is the nonparametric area integrand \( f(x,\xi ) = \sqrt {{1 + {{\left\| \xi \right\|}^{2}}}} \); in this case …
A Nonlocal Mean Curvature Flow
Consider a family { Γt}t≥0 of hypersurfaces embedded in \(\mathbb {R}^N\) parametrized by time t. Assume that each Γt = ∂Et, the boundary of a bounded open set Et in \(\mathbb {R}^N\).
Renormalized solutions for degenerate elliptic–parabolic problems with nonlinear dynamical boundary conditions and L1-data
Abstract We consider a degenerate elliptic–parabolic problem with nonlinear dynamical boundary conditions. Assuming L 1 -data, we prove existence and uniqueness in the framework of renormalized solutions. Particular instances of this problem appear in various phenomena with changes of phase like multiphase Stefan problems and in the weak formulation of the mathematical model of the so-called Hele–Shaw problem. Also, the problem with non-homogeneous Neumann boundary condition is included.
Stabilization of solutions of the filtration equation with absorption and non-linear flux
This paper is primarily concerned with the large time behaviour of solutions of the initial boundary value problem $$\begin{gathered} u_t = \Delta \phi (u) - \varphi (x,u)in\Omega \times (0,\infty ) \hfill \\ - \frac{{\partial \phi (u)}}{{\partial \eta }} \in \beta (u)on\partial \Omega \times (0,\infty ) \hfill \\ u(x,0) = u_0 (x)in\Omega . \hfill \\ \end{gathered} $$ Problems of this sort arise in a number of areas of science; for instance, in models for gas or fluid flows in porous media and for the spread of certain biological populations.
Kurdyka–Łojasiewicz–Simon inequality for gradient flows in metric spaces
The best constant for the Sobolev trace embedding from into
Abstract In this paper we study the best constant, λ 1 ( Ω ) for the trace map from W 1 , 1 ( Ω ) into L 1 ( ∂ Ω ) . We show that this constant is attained in BV ( Ω ) when λ 1 ( Ω ) 1 . Moreover, we prove that this constant can be obtained as limit when p ↘ 1 of the best constant of W 1 , p ( Ω ) ↪ L p ( ∂ Ω ) . To perform the proofs we will look at Neumann problems involving the 1-Laplacian, Δ 1 ( u ) = div ( Du / | Du | ) .
A Fisher–Kolmogorov equation with finite speed of propagation
Abstract In this paper we study a Fisher–Kolmogorov type equation with a flux limited diffusion term and we prove the existence and uniqueness of finite speed moving fronts and the existence of some explicit solutions in a particular regime of the equation.
Optimal Mass Transport on Metric Graphs
We study an optimal mass transport problem between two equal masses on a metric graph where the cost is given by the distance in the graph. To solve this problem we find a Kantorovich potential as the limit of $p$-Laplacian--type problems in the graph where at the vertices we impose zero total flux boundary conditions. In addition, the approximation procedure allows us to find a transport density that encodes how much mass has to be transported through a given point in the graph, and also provides a simple formula of convex optimization for the total cost.
Total Variation Based Image Restoration
For the purpose of image restoration the process of image formation can be modeled in a first approximation by the formula [207] $$ {u_d} = Q\{ II(k*u) + n\} , $$ (1.1) where u represents the photonic flux k is the point spread function of the optical-captor joint apparatus П is a sampling operator, i.e., a Dirac comb supported by the centers of the matrix of digital sensors, n represents a random perturbation due to photonic or electronic noise, and Qis a uniform quantization operator mapping ℝ to a discrete interval of values, typically [0, 255].
Existence and Uniqueness Results for Quasi-linear Elliptic and Parabolic Equations with Nonlinear Boundary Conditions
We study the questions of existence and uniqueness of weak and entropy solutions for equations of type -div a(x, Du)+γ(u) ∋ φ, posed in an open bounded subset Ω of ℝN, with nonlinear boundary conditions of the form a(x, Du)·η+β(u) ∋ ψ. The nonlinear elliptic operator div a(x, Du) is modeled on the p-Laplacian operator Δp(u) = div (|Du|p−2Du), with p > 1, γ and β are maximal monotone graphs in ℝ2 such that 0 ∈ γ(0) and 0 ∈ β(0), and the data φ ∈ L1 (Ω) and ψ ∈ L1 (∂Ω). We also study existence and uniqueness of weak solutions for a general degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions. Particular instances of this problem appear in various phenomena with c…
Some diffusion equations with finite propagation speed
We summarize some of our recent results on diffusion equations with finite speed of propagation. These equations have been introduced to correct the infinite speed of propagation predicted by the classical linear diffusion theory. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Quasi-compactness of dominated positive operators andC o-semigroups
The essential spectrum of AM-compact operators
\( L^{1} \) existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions
Abstract In this paper we study the questions of existence and uniqueness of weak and entropy solutions for equations of type − div a ( x , D u ) + γ ( u ) ∋ ϕ , posed in an open bounded subset Ω of R N , with nonlinear boundary conditions of the form a ( x , D u ) ⋅ η + β ( u ) ∋ ψ . The nonlinear elliptic operator div a ( x , D u ) is modeled on the p-Laplacian operator Δ p ( u ) = div ( | D u | p − 2 D u ) , with p > 1 , γ and β are maximal monotone graphs in R 2 such that 0 ∈ γ ( 0 ) and 0 ∈ β ( 0 ) , and the data ϕ ∈ L 1 ( Ω ) and ψ ∈ L 1 ( ∂ Ω ) .
Nonlocal Cheeger and Calibrable Sets
Given a non-null, measurable and bounded set \(\Omega \subset \mathbb {R}^N\), we define its J-Cheeger constant
Minimizing total variation flow
We prove existence and uniqueness of weak solutions for the minimizing total variation flow with initial data in $L^1$. We prove that the length of the level sets of the solution, i.e., the boundaries of the level sets, decreases with time, as one would expect, and the solution converges to the spatial average of the initial datum as $t \to \infty$. We also prove that local maxima strictly decrease with time; in particular, flat zones immediately decrease their level. We display some numerical experiments illustrating these facts.
A Monge-Kantorovich mass transport problem for a discrete distance
This paper is concerned with a Monge-Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when rescaling the step distance, approximate the classical problem. In particular we obta…
Fractional p-Laplacian evolution equations
Abstract In this paper we study the fractional p-Laplacian evolution equation given by u t ( t , x ) = ∫ A 1 | x − y | N + s p | u ( t , y ) − u ( t , x ) | p − 2 ( u ( t , y ) − u ( t , x ) ) d y for x ∈ Ω , t > 0 , 0 s 1 , p ≥ 1 . In a bounded domain Ω we deal with the Dirichlet problem by taking A = R N and u = 0 in R N ∖ Ω , and the Neumann problem by taking A = Ω . We include here the limit case p = 1 that has the extra difficulty of giving a meaning to u ( y ) − u ( x ) | u ( y ) − u ( x ) | when u ( y ) = u ( x ) . We also consider the Cauchy problem in the whole R N by taking A = Ω = R N . We find existence and uniqueness of strong solutions for each of the above mentioned problem…
Some regularity results on the ‘relativistic’ heat equation
AbstractWe prove some partial regularity results for the entropy solution u of the so-called relativistic heat equation. In particular, under some assumptions on the initial condition u0, we prove that ut(t) is a Radon measure in RN. Moreover, if u0 is log-concave inside its support Ω, Ω being a convex set, then we show the solution u(t) is also log-concave in its support Ω(t). This implies its smoothness in Ω(t). In that case we can give a simpler characterization of the notion of entropy solution.
The Neumann Problem for the Total Variation Flow
This chapter is devoted to prove existence and uniqueness of solutions for the minimizing total variation flow with Neumann boundary conditions, namely $$ \left\{ \begin{gathered} \frac{{\partial u}} {{\partial t}} = div\left( {\frac{{Du}} {{\left| {Du} \right|}}} \right) in Q = (0,\infty ) \times \Omega , \hfill \\ \frac{{\partial u}} {{\partial \eta }} = 0 on S = (0,\infty ) \times \partial \Omega , \hfill \\ u(0,x) = u_0 (x) in x \in \Omega , \hfill \\ \end{gathered} \right. $$ (2.1) where Ω is a bounded set in ℝ N with Lipschitz continuous boundary ∂ Ω and u0 ∈ L1(Ω). As we saw in the previous chapter, this partial differential equation appears when one uses the steepest descent method …
The Heat Content for Nonlocal Diffusion with Non-singular Kernels
Abstract We study the behavior of the heat content for a nonlocal evolution problem.We obtain an asymptotic expansion for the heat content of a set D, defined as ℍ D J ( t ) := ∫ D u ( x , t ) 𝑑 x ${\mathbb{H}_{D}^{J}(t):=\int_{D}u(x,t)\,dx}$ , with u being the solution to u t = J ∗ u - u ${u_{t}=J\ast u-u}$ withinitial condition u 0 = χ D ${u_{0}=\chi_{D}}$ . This expansion is given in terms of geometric values of D. As a consequence, we obtain that ℍ D J ( t ) = | D | - P J ( D ) t + o ( t ) ${\mathbb{H}^{J}_{D}(t)=\lvert D\rvert-P_{J}(D)t+o(t)}$ as t ↓ 0 ${t\downarrow 0}$ .We also recover the usual heat content for the heat equation when we rescale the kernel J in an appro…
The Euler–Lagrange equation for the Anisotropic least gradient problem
Abstract In this paper we find the Euler–Lagrange equation for the anisotropic least gradient problem inf { ∫ Ω ϕ ( x , D u ) : u ∈ B V ( Ω ) , u | ∂ Ω = f } being ϕ a metric integrand and f ∈ L 1 ( ∂ Ω ) . We also characterize the functions of ϕ -least gradient as those whose boundary of the level set is ϕ -area minimizing in Ω .
QUALITATIVE PROPERTIES OF THE SOLUTIONS OF A NONLINEAR FLUX-LIMITED EQUATION ARISING IN THE TRANSPORT OF MORPHOGENS
In this paper we study some qualitative properties of the solutions of a nonlinear flux-limited equation arising in the transport of morphogens in biological systems. Questions related to the existence of steady states, the finite speed of propagating fronts or the regularization in the interior of the support are studied from analytical and numerical points of view.
Porous medium equation with absorption and a nonlinear boundary condition
where is a bounded domain with smooth boundary, @=@ is the outer normal derivative, m ? 1; p; and q are positive parameters and u0 is in L∞( ). Problems of this form arise in mathematical models in a number of areas of science, for instance, in models for gas or :uid :ow in porous media [3] and for the spread of certain biological populations [13]. In the semilinear case (that is for m=1), there is an extensive literature about global existence and blow-up results for this type of problems, see among others, [5,9,16] and the literature therein. For the degenerate case (that is for m = 1), with a nonlinear boundary condition, local existence and uniqueness of weak solutions which are limit o…
Solutions to the 1-harmonic flow with values into a hyper-octant of the N-sphere
Abstract We announce existence results for the 1-harmonic flow from a domain of R m into the first hyper-octant of the N -dimensional unit sphere, under homogeneous Neumann boundary conditions. The arguments rely on a notion of “geodesic representative” of a BV-vector field on its jump set.
A non-homogeneous elliptic problem dealing with the level set formulation of the inverse mean curvature flow
Abstract In the present paper we study the Dirichlet problem for the equation − div ( D u | D u | ) + | D u | = f in an unbounded domain Ω ⊂ R N , where the datum f is bounded and nonnegative. We point out that the only hypothesis assumed on ∂Ω is that of being Lipschitz-continuous. This problem is the non-homogeneous extension of the level set formulation of the inverse mean curvature flow in a Euclidean space. We introduce a suitable concept of weak solution, for which we prove existence, uniqueness and a comparison principle.
On the best Lipschitz extension problem for a discrete distance and the discrete ∞-Laplacian
Abstract This paper concerns the best Lipschitz extension problem for a discrete distance that counts the number of steps. We relate this absolutely minimizing Lipschitz extension with a discrete ∞-Laplacian problem, which arises as the dynamic programming formula for the value function of some e -tug-of-war games. As in the classical case, we obtain the absolutely minimizing Lipschitz extension of a datum f by taking the limit as p → ∞ in a nonlocal p -Laplacian problem.
THE MINIMIZING TOTAL VARIATION FLOW WITH MEASURE INITIAL CONDITIONS
In this paper we obtain existence and uniqueness of solutions for the Cauchy problem for the minimizing total variation flow when the initial condition is a Radon measure in ℝN. We study limit solutions obtained by weakly approximating the initial measure μ by functions in L1(ℝN). We are able to characterize limit solutions when the initial condition μ=h+μs, where h∈L1(ℝN)∩L∞(ℝN), and μs=αℋk⌊ S,α≥0,k is an integer and S is a k-dimensional manifold with bounded curvatures. In case k<N-1 we prove that the singular part of the solution does not move, it remains equal to μs for all t≥0. In particular, u(t)=δ0 when u(0)=δ0. In case k=N-1 we prove that the singular part of the limit solution …
THE 1-HARMONIC FLOW WITH VALUES IN A HYPEROCTANT OF THE N-SPHERE
We prove the existence of solutions to the 1-harmonic flow — that is, the formal gradient flow of the total variation of a vector field with respect to the [math] -distance — from a domain of [math] into a hyperoctant of the [math] -dimensional unit sphere, [math] , under homogeneous Neumann boundary conditions. In particular, we characterize the lower-order term appearing in the Euler–Lagrange formulation in terms of the “geodesic representative” of a BV-director field on its jump set. Such characterization relies on a lower semicontinuity argument which leads to a nontrivial and nonconvex minimization problem: to find a shortest path between two points on [math] with respect to a metric w…
Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations
Abstract In this paper we approximate a Kantorovich potential and a transport density for the mass transport problem of two measures (with the transport cost given by a Finsler distance), by taking limits, as p goes to infinity, to a family of variational problems of p-Laplacian type. We characterize the Euler–Lagrange equation associated to the variational Kantorovich problem. We also obtain different characterizations of the Kantorovich potentials and a Benamou–Brenier formula for the transport problem.
Mass transport problems obtained as limits of p-Laplacian type problems with spatial dependence
Abstract. We consider the following problem: given a bounded convex domain Ω ⊂ ℝ N ${\Omega \subset \mathbb {R}^N}$ we consider the limit as p → ∞ of solutions to - div ( b p - p | D u | p - 2 D u ) = f + - f - ${- \operatorname{div} (b_{p}^{-p} |Du|^{p-2} Du)=f_+ - f_-}$ in Ω and b p - p | D u | p - 2 ∂ u ∂ η = 0 ${ b_{p}^{-p} |Du|^{p-2} \frac{\partial u}{\partial \eta }=0}$ on ∂ Ω ${\partial \Omega }$ . Under appropriate assumptions on the coefficients bp that in particular verify that lim p → ∞ b p = b ${ \lim _{p\rightarrow \infty } b_p = b }$ uniformly in Ω ¯ ${\overline{\Omega }}$ , we prove that there is a uniform limit of u p j ${u_{p_j}}$ (along a sequence p j → ∞ ${p_j \rightarrow…
A spectral mapping theorem for perturbed strongly continuous semigroups
Least gradient functions in metric random walk spaces
In this paper we study least gradient functions in metric random walk spaces, which include as particular cases the least gradient functions on locally finite weighted connected graphs and nonlocal least gradient functions on $\mathbb{R}^N$. Assuming that a Poincar\'e inequality is satisfied, we study the Euler-Lagrange equation associated with the least gradient problem. We also prove the Poincar\'e inequality in a few settings.
Some qualitative properties for the total variation flow
We prove the existence of a finite extinction time for the solutions of the Dirichlet problem for the total variation flow. For the Neumann problem, we prove that the solutions reach the average of its initial datum in finite time. The asymptotic profile of the solutions of the Dirichlet problem is also studied. It is shown that the profiles are nonzero solutions of an eigenvalue-type problem that seems to be unexplored in the previous literature. The propagation of the support is analyzed in the radial case showing a behaviour entirely different to the case of the problem associated with the p-Laplacian operator. Finally, the study of the radially symmetric case allows us to point out othe…
Nonlocal Isoperimetric Inequality
For the nonlocal perimeter, there is also an isoperimetric inequality, and here the main hypothesis used on J is that it is radially nonincreasing.
Asymptotic Behaviour and Qualitative Properties of Solutions
The purpose of this chapter is to give some qualitative properties of the flow $$ frac{{\partial u}}{{\partial t}} = div\left( {\frac{{Du}}{{\left| {Du} \right|}}} \right) in\;]0,\infty [ \times {\mathbb{R}^N} $$ (4.1) .
Evolution problems of Leray-Lions type with nonhomogeneous Neumann boundary conditions in metric random walk spaces
Abstract In this paper we study evolution problems of Leray–Lions type with nonhomogeneous Neumann boundary conditions in the framework of metric random walk spaces. This covers cases with the p -Laplacian operator in weighted discrete graphs and nonlocal operators with nonsingular kernel in R N .
A strongly degenerate quasilinear elliptic equation
Abstract We prove existence and uniqueness of entropy solutions for the quasilinear elliptic equation u - div a ( u , Du ) = v , where 0 ⩽ v ∈ L 1 ( R N ) ∩ L ∞ ( R N ) , a ( z , ξ ) = ∇ ξ f ( z , ξ ) , and f is a convex function of ξ with linear growth as ∥ ξ ∥ → ∞ , satisfying other additional assumptions. In particular, this class of equations includes the elliptic problems associated to a relativistic heat equation and a flux limited diffusion equation used in the theory of radiation hydrodynamics, respectively. In a second part of this work, using Crandall–Liggett's iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding…
Nonlocal Heat Content
The heat content of a Borel measurable set \(D \subset \mathbb {R}^N\) at time t is defined by M. van der Berg in [69] (see also [70]) as: $$\displaystyle \mathbb {H}_D(t) = \int _D T(t) {\chi }_D (x) dx, $$ with (T(t))t≥0 being the heat semigroup in \(L^2(\mathbb {R}^N)\). Therefore, the heat content represents the amount of heat in D at time t if in D the initial temperature is 1 and in \(\mathbb {R}^N \setminus D\) the initial temperature is 0.
On a nonlinear flux-limited equation arising in the transport of morphogens
Abstract Motivated by a mathematical model for the transport of morphogens in biological systems, we study existence and uniqueness of entropy solutions for a mixed initial–boundary value problem associated with a nonlinear flux-limited diffusion system. From a mathematical point of view the problem behaves more as a hyperbolic system than a parabolic one.
Global existence for a degenerate nonlinear diffusion problem with nonlinear gradient term and source
Evolution Problems Associated to Linear Growth Functionals: The Dirichlet Problem
Let Ω be a bounded set inIR N with Lipschitz continuous boundary ∂Ω. We are interested in the problem
Mass transport problems for the Euclidean distance obtained as limits of p-Laplacian type problems with obstacles
In this paper we analyze a mass transportation problem that consists in moving optimally (paying a transport cost given by the Euclidean distance) an amount of a commodity larger than or equal to a fixed one to fulfil a demand also larger than or equal to a fixed one, with the obligation of paying an extra cost of −g1(x) for extra production of one unit at location x and an extra cost of g2(y) for creating one unit of demand at y. The extra amounts of mass (commodity/demand) are unknowns of the problem. Our approach to this problem is by taking the limit as p→∞ to a double obstacle problem (with obstacles g1, g2) for the p-Laplacian. In fact, under a certain natural constraint on the extra …
ENTROPY SOLUTIONS IN THE STUDY OF ANTIPLANE SHEAR DEFORMATIONS FOR ELASTIC SOLIDS
The concept of entropy solution was recently introduced in the study of Dirichlet problems for elliptic equations and extended for parabolic equations with nonlinear boundary conditions. The aim of this paper is to use the method of entropy solutions in the study of a new problem which arise in the theory of elasticity. More precisely, we consider here the infinitesimal antiplane shear deformation of a cylindrical elastic body subjected to given forces and in a frictional contact with a rigid foundation. The elastic constitutive law is physically nonlinear and the friction is described by a static law. We present a variational formulation of the model and prove the existence and the uniquen…
On the space of all regular operators from C(K) into C(K)
AbstractIt is known that Lr(E, C(K)), the space of all regular operators from E into C(K), is a Riesz space for all Riesz spaces E if and only if K is Stonian. We prove that this statement holds if E is replaced by C(K), where K is a compact space, the cardinal number of which satisfies a certain condition.
Existence and uniqueness for a degenerate parabolic equation with 𝐿¹-data
In this paper we study existence and uniqueness of solutions for the boundary-value problem, with initial datum in L 1 ( Ω ) L^{1}(\Omega ) , u t = d i v a ( x , D u ) in ( 0 , ∞ ) × Ω , \begin{equation*}u_{t} = \mathrm {div} \mathbf {a} (x,Du) \quad \text {in } (0, \infty ) \times \Omega , \end{equation*} − ∂ u ∂ η a ∈ β ( u ) on ( 0 , ∞ ) × ∂ Ω , \begin{equation*}-{\frac {{\partial u} }{{\partial \eta _{a}}}} \in \beta (u) \quad \text {on } (0, \infty ) \times \partial \Omega ,\end{equation*} u ( x , 0 ) = u 0 ( x ) in Ω , \begin{equation*}u(x, 0) = u_{0}(x) \quad \text {in }\Omega ,\end{equation*} where a is a Carathéodory function satisfying the classical Leray-Lions hypothesis, ∂ / …
Diffusion Equations with Finite Speed of Propagation
In this paper we summarize some of our recent results on diffusion equations with finite speed of propagation. These equations have been introduced to correct the infinite speed of propagation predicted by the classical linear diffusion theory.
A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u) with homogeneous Neumann boundary conditions. We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L∞ (0, T ; Lp (Ω)) to the solution of the p-Laplacian with homogeneous Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous t…
A mathematical model for the phase of sexual reproduction in monogonont rotifers
Recently, the optimal sex allocation in monogonont rotifers is studied in [1], and, as a closely related question, the relative frequencies of the relevant types of mictic females. The authors focus on the evolution of the age at which young mictic females lose their fertilization susceptibility and they address the threshold age of fertilization that maximizes resting egg production. Assuming that a stationary population is achieved, with stable age distribution, they obtain their results, without knowing the stationary population. Our aim is to study this problem in the framework of the theory of nonlinear age-dependent population dynamics developed by G. F. Webb in [13], which is more ap…
Parabolic Equations Minimizing Linear Growth Functionals: L1-Theory
Let Ω be a bounded set in ℝN with boundary of class C1. We are interested in the problem $$ \left\{ \begin{gathered} \frac{{\partial u}} {{\partial t}} = diva\left( {x,Du} \right)in Q = \left( {0,\infty } \right) \times \Omega , \hfill \\ u\left( {t,x} \right) = \phi \left( x \right)on S = \left( {0,\infty } \right) \times \partial \Omega , \hfill \\ u\left( {0,x} \right) = u_0 \left( x \right)in x \in \Omega \hfill \\ \end{gathered} \right. $$ (1) where ϕ ∈ L1(∂Ω), u0 ∈ L2(Ω) and a(x, ξ) = ∇ξ f(x, ξ, f being a function with linear growth in ‖ξ‖ as ‖ξ‖ → ∞. One of the classical examples is the nonparametric area integrand for which \( f(x,\xi ) = \sqrt {1 + \left\| \xi \right\|^2 } \). Prob…
$(BV,L^p)$-decomposition, $p=1,2$, of Functions in Metric Random Walk Spaces
In this paper we study the $(BV,L^p)$-decomposition, $p=1,2$, of functions in metric random walk spaces, a general workspace that includes weighted graphs and nonlocal models used in image processing. We obtain the Euler-Lagrange equations of the corresponding variational problems and their gradient flows. In the case $p=1$ we also study the associated geometric problem and the thresholding parameters.
s, p-Harmonic Approximation of Functions of Least W s,l-Seminorm
Abstract We investigate the convergence as $p\searrow 1$ of the minimizers of the $W^{s,p}$-energy for $s\in (0,1)$ and $p\in (1,\infty )$ to those of the $W^{s,1}$-energy, both in the pointwise sense and by means of $\Gamma $-convergence. We also address the convergence of the corresponding Euler–Lagrange equations and the equivalence between minimizers and weak solutions. As ancillary results, we study some regularity issues regarding minimizers of the $W^{s,1}$-energy.
The 1-Harmonic Flow with Values into $\mathbb S^{1}$
We introduce a notion of solution for the $1$-harmonic flow, i.e., the formal gradient flow of the total variation functional with respect to the $L^2$-distance, from a domain of $\mathbb R^m$ into a geodesically convex subset of an $N$-sphere. For such a notion, under homogeneous Neumann boundary conditions, we prove both existence and uniqueness of solutions when the target space is a semicircle and the existence of solutions when the target space is a circle and the initial datum has no jumps of an “angle” larger than $\pi$. Earlier results in [J. W. Barrett, X. Feng, and A. Prohl, SIAM J. Math. Anal., 40 (2008), pp. 1471--1498] and [X. Feng, Calc. Var. Partial Differential Equations, 37…
The Dirichlet problem for the total variation flow
Suppose that Ω is an open bounded domain with a Lipschitz boundary. The purpose of this chapter is to study the Dirichlet problem $$ \left\{ \begin{gathered} \frac{{\partial u}} {{\partial t}} = div\left( {\frac{{Du}} {{\left| {Du} \right|}}} \right)in Q = \left( {0,\infty } \right) \times \Omega , \hfill \\ u\left( {t,x} \right) = \phi \left( x \right)on S = \left( {0,\infty } \right) \times \partial \Omega , \hfill \\ u\left( {0,x} \right) = u_0 \left( x \right)in x \in \Omega \hfill \\ \end{gathered} \right. $$ (5.1) where u0 ∈ L1(Ω) and ϕ ∈ L1 (∂Ω). This evolution equation is related to the gradient descent method used to solve the problem $$ \begin{gathered} Minimize \int {_\Omega \lef…
OBSTACLE PROBLEMS FOR DEGENERATE ELLIPTIC EQUATIONS WITH NONHOMOGENEOUS NONLINEAR BOUNDARY CONDITIONS
In this paper we study the questions of existence and uniqueness of solutions for equations of type - div a(x,Du) + γ(u) ∋ ϕ, posed in an open bounded subset Ω of ℝN, with nonlinear boundary conditions of the form a(x,Du) · η + β(u) ∋ ψ. The nonlinear elliptic operator div a(x,Du) modeled on the p-Laplacian operator Δp(u) = div (|Du|p-2Du), with p > 1, γ and β maximal monotone graphs in ℝ2 such that 0 ∈ γ(0) ∩ β(0), [Formula: see text] and the data ϕ ∈ L1(Ω) and ψ ∈ L1(∂ Ω). Since D(γ) ≠ ℝ, we are dealing with obstacle problems. For this kind of problems the existence of weak solution, in the usual sense, fails to be true for nonhomogeneous boundary conditions, so a new concept of solut…
Nonlocal Minimal Surfaces and Nonlocal Curvature
Recall that if a set E has minimal local perimeter in a bounded set Ω, then it has zero mean curvature at each point of ∂E ∩ Ω (see [51]), and the equation that says that the curvature is equal to zero is the Euler–Lagrange equation associated to the minimization of the perimeter of a set.