6533b824fe1ef96bd1281308
RESEARCH PRODUCT
The Euler–Lagrange equation for the Anisotropic least gradient problem
José M. Mazónsubject
Applied Mathematics010102 general mathematicsMathematical analysisGeneral EngineeringBoundary (topology)General Medicine01 natural sciences010101 applied mathematicsEuler–Lagrange equationComputational MathematicsLevel setMetric (mathematics)0101 mathematicsAnisotropyGeneral Economics Econometrics and FinanceAnalysisMathematicsdescription
Abstract In this paper we find the Euler–Lagrange equation for the anisotropic least gradient problem inf { ∫ Ω ϕ ( x , D u ) : u ∈ B V ( Ω ) , u | ∂ Ω = f } being ϕ a metric integrand and f ∈ L 1 ( ∂ Ω ) . We also characterize the functions of ϕ -least gradient as those whose boundary of the level set is ϕ -area minimizing in Ω .
year | journal | country | edition | language |
---|---|---|---|---|
2016-10-01 | Nonlinear Analysis: Real World Applications |