6533b871fe1ef96bd12d10e8

RESEARCH PRODUCT

The Dirichlet problem for the total variation flow

Fuensanta AndreuColoma BallesterJosé M. MazónVicente Caselles

subject

Dirichlet problemMathematical analysisBoundary (topology)Dirichlet's energyOmegaCombinatoricssymbols.namesakeFlow (mathematics)Dirichlet's principleDomain (ring theory)Evolution equationsymbolsAnalysisMathematics

description

Suppose that Ω is an open bounded domain with a Lipschitz boundary. The purpose of this chapter is to study the Dirichlet problem $$ \left\{ \begin{gathered} \frac{{\partial u}} {{\partial t}} = div\left( {\frac{{Du}} {{\left| {Du} \right|}}} \right)in Q = \left( {0,\infty } \right) \times \Omega , \hfill \\ u\left( {t,x} \right) = \phi \left( x \right)on S = \left( {0,\infty } \right) \times \partial \Omega , \hfill \\ u\left( {0,x} \right) = u_0 \left( x \right)in x \in \Omega \hfill \\ \end{gathered} \right. $$ (5.1) where u0 ∈ L1(Ω) and ϕ ∈ L1 (∂Ω). This evolution equation is related to the gradient descent method used to solve the problem $$ \begin{gathered} Minimize \int {_\Omega \left\| {Du} \right\| + } \int {_\Omega f udx + \int {_{\partial \Omega } \left| {u - \phi } \right|d\mathcal{H}^{N - 1} } } \hfill \\ u \in BV\left( \Omega \right) \hfill \\ \end{gathered} $$ (2) where f ∈ L1(Ω), ϕ ∈ L∞ (∂Ω) (existence for this variational problem was proved in [118], Theorem 1.4).

http://hdl.handle.net/10230/36150