Minimizing total variation flow
We prove existence and uniqueness of weak solutions for the minimizing total variation flow with initial data in $L^1$. We prove that the length of the level sets of the solution, i.e., the boundaries of the level sets, decreases with time, as one would expect, and the solution converges to the spatial average of the initial datum as $t \to \infty$. We also prove that local maxima strictly decrease with time; in particular, flat zones immediately decrease their level. We display some numerical experiments illustrating these facts.
The Dirichlet problem for the total variation flow
Suppose that Ω is an open bounded domain with a Lipschitz boundary. The purpose of this chapter is to study the Dirichlet problem $$ \left\{ \begin{gathered} \frac{{\partial u}} {{\partial t}} = div\left( {\frac{{Du}} {{\left| {Du} \right|}}} \right)in Q = \left( {0,\infty } \right) \times \Omega , \hfill \\ u\left( {t,x} \right) = \phi \left( x \right)on S = \left( {0,\infty } \right) \times \partial \Omega , \hfill \\ u\left( {0,x} \right) = u_0 \left( x \right)in x \in \Omega \hfill \\ \end{gathered} \right. $$ (5.1) where u0 ∈ L1(Ω) and ϕ ∈ L1 (∂Ω). This evolution equation is related to the gradient descent method used to solve the problem $$ \begin{gathered} Minimize \int {_\Omega \lef…