6533b837fe1ef96bd12a326b

RESEARCH PRODUCT

Evolution problems of Leray-Lions type with nonhomogeneous Neumann boundary conditions in metric random walk spaces

José M. MazónMarcos SoleraJulián Toledo

subject

Pure mathematicsKernel (set theory)Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEsType (model theory)Random walk01 natural scienceslaw.invention010101 applied mathematicsMathematics - Analysis of PDEsInvertible matrixlawMetric (mathematics)Neumann boundary conditionFOS: Mathematics0101 mathematicsLaplace operatorAnalysis35K55 47H06 47J35MathematicsAnalysis of PDEs (math.AP)

description

Abstract In this paper we study evolution problems of Leray–Lions type with nonhomogeneous Neumann boundary conditions in the framework of metric random walk spaces. This covers cases with the p -Laplacian operator in weighted discrete graphs and nonlocal operators with nonsingular kernel in R N .

https://dx.doi.org/10.48550/arxiv.1911.04778