6533b85ffe1ef96bd12c0ffd

RESEARCH PRODUCT

Existence and uniqueness for a degenerate parabolic equation with 𝐿Âč-data

José M. MazónFuensanta AndreuSergio Segura De LeónJuliån Toledo

subject

Pure mathematicsMonotone polygonApplied MathematicsGeneral MathematicsOperator (physics)Mathematical analysisDegenerate energy levelsBoundary (topology)Parabolic cylinder functionFunction (mathematics)UniquenessLaplace operatorMathematics

description

In this paper we study existence and uniqueness of solutions for the boundary-value problem, with initial datum in L 1 ( Ω ) L^{1}(\Omega ) , u t = d i v a ( x , D u ) in  ( 0 , ∞ ) × Ω , \begin{equation*}u_{t} = \mathrm {div} \mathbf {a} (x,Du) \quad \text {in } (0, \infty ) \times \Omega , \end{equation*} − ∂ u ∂ η a ∈ ÎČ ( u ) on  ( 0 , ∞ ) × ∂ Ω , \begin{equation*}-{\frac {{\partial u} }{{\partial \eta _{a}}}} \in \beta (u) \quad \text {on } (0, \infty ) \times \partial \Omega ,\end{equation*} u ( x , 0 ) = u 0 ( x ) in  Ω , \begin{equation*}u(x, 0) = u_{0}(x) \quad \text {in }\Omega ,\end{equation*} where a is a CarathĂ©odory function satisfying the classical Leray-Lions hypothesis, ∂ / ∂ η a \partial / {\partial \eta _{a}} is the Neumann boundary operator associated to a \mathbf {a} , D u Du the gradient of u u and ÎČ \beta is a maximal monotone graph in R × R {\mathbb {R}}\times {\mathbb {R}} with 0 ∈ ÎČ ( 0 ) 0 \in \beta (0) .

https://doi.org/10.1090/s0002-9947-99-01981-9