0000000000267374

AUTHOR

Olivier Dulieu

showing 8 related works from this author

Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory

2009

International audience; Implementation of quantum controlled-NOT (CNOT) gates in realistic molecular systems is studied using stimulated Raman adiabatic passage (STIRAP) techniques optimized in the time domain by genetic algorithms or coupled with optimal control theory. In the first case, with an adiabatic solution (a series of STIRAP processes) as starting point, we optimize in the time domain different parameters of the pulses to obtain a high fidelity in two realistic cases under consideration. A two-qubit CNOT gate constructed from different assignments in rovibrational states is considered in diatomic (NaCs) or polyatomic (SCCl2) molecules. The difficulty of encoding logical states in…

[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph][PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Physics::Atomic and Molecular Clusters[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
researchProduct

Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory

2009

Implementation of quantum controlled-NOT (CNOT) gates in realistic molecular systems is studied using stimulated Raman adiabatic passage (STIRAP) techniques optimized in the time domain by genetic algorithms or coupled with optimal control theory. In the first case, with an adiabatic solution (a series of STIRAP processes) as starting point, we optimize in the time domain different parameters of the pulses to obtain a high fidelity in two realistic cases under consideration. A two-qubit CNOT gate constructed from different assignments in rovibrational states is considered in diatomic (NaCs) or polyatomic $({\text{SCCl}}_{2})$ molecules. The difficulty of encoding logical states in pure rota…

Physics010304 chemical physicsField (physics)Stimulated Raman adiabatic passageRotational–vibrational spectroscopyOptimal control01 natural sciencesAtomic and Molecular Physics and OpticsControlled NOT gateQuantum mechanics0103 physical sciencesPhysics::Atomic and Molecular ClustersTime domain010306 general physicsAdiabatic processQuantum computerPhysical Review A
researchProduct

Optical Shielding of Destructive Chemical Reactions between Ultracold Ground-State NaRb Molecules

2020

Polar quantum gases represent promising platforms for studying many-body physics and strongly correlated systems with possible applications e.g. in quantum simulation or quantum computation. Due to their large permanent electric dipole moment polar molecules in electric field exhibit strong long-range anisotropic dipole-dipole interactions (DDIs). The creation and trapping of ultracold dipolar diatomic molecules of various species are feasible in many experimental groups nowadays. However long time trapping is still a challenge even in the case of the so called nonreactive molecules which are supposed to be immune against inelastic collisions in their absolute ground state [1] . Various hyp…

Atomic Physics (physics.atom-ph)Inelastic collisionGeneral Physics and AstronomyFOS: Physical sciencesQuantum simulator01 natural sciences7. Clean energyMolecular physicslaw.inventionPhysics - Atomic Physics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]law0103 physical sciencesMoleculeSpontaneous emissionPhysics::Atomic Physics010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Rotational–vibrational spectroscopyLaserDiatomic moleculeDipoleElectric dipole momentQuantum Gases (cond-mat.quant-gas)Excited stateAtom optics[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsCondensed Matter - Quantum GasesGround state
researchProduct

Ultracold Rare-Earth Magnetic Atoms with an Electric Dipole Moment

2018

We propose a new method to produce an electric and magnetic dipolar gas of ultracold dysprosium atoms. The pair of nearly degenerate energy levels of opposite parity, at 17513.33 cm$^{-1}$ with electronic angular momentum $J=10$, and at 17514.50 cm$^{-1}$ with $J=9$, can be mixed with an external electric field, thus inducing an electric dipole moment in the laboratory frame. For field amplitudes relevant to current-day experiments, we predict a magnetic dipole moment up to 13 Bohr magnetons, and an electric dipole moment up to 0.22 Debye, which is similar to the values obtained for alkali-metal diatomics. When a magnetic field is present, we show that the electric dipole moment is strongly…

Angular momentumAtomic Physics (physics.atom-ph)General Physics and AstronomyFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAtomicPhysics - Atomic Physics010305 fluids & plasmas[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Electric field0103 physical sciencesPhysics::Atomic Physics010306 general physicsPhysicsQuantum PhysicsMagnetic moment[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Degenerate energy levelsMolecularand Optical Physics3. Good healthMagnetic fieldElectric dipole momentDipoleAmplitudeQuantum Gases (cond-mat.quant-gas)[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)
researchProduct

Purely long-range polar molecules composed of identical lanthanide atoms

2019

International audience; Doubly polar molecules, possessing an electric dipole moment and a magnetic dipole moment, can strongly couple to both an external electric field and a magnetic field, providing unique opportunities to exert full control of the system quantum state at ultracold temperatures. We propose a method for creating a purely long-range doubly polar homonuclear molecule from a pair of strongly magnetic lanthanide atoms, one atom being in its ground level and the other in a superposition of quasi-degenerate opposite-parity excited levels [Phys. Rev. Lett. 121, 063201 (2018)]. The electric dipole moment is induced by coupling the excited levels with an external electric field. W…

PhysicsZeeman effectMagnetic moment[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Atomic Physics (physics.atom-ph)Chemical polarityFOS: Physical sciences01 natural sciencesDiatomic moleculeHomonuclear molecule010305 fluids & plasmasPhysics - Atomic PhysicsElectric dipole momentsymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Excited stateElectric field0103 physical sciencessymbolsPhysics::Atomic Physics[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physics010306 general physics
researchProduct

Anisotropic light-shift and magic-polarization of the intercombination line of Dysprosium atoms in a far-detuned dipole trap

2018

We characterize the anisotropic differential ac-Stark shift for the Dy $626$ nm intercombination transition, induced in a far-detuned $1070$ nm optical dipole trap, and observe the existence of a "magic polarization" for which the polarizabilities of the ground and excited states are equal. From our measurements we extract both the scalar and tensorial components of the dynamic dipole polarizability for the excited state, $\alpha_E^\text{s} = 188 (12)\,\alpha_\text{0}$ and $\alpha_E^\text{t} = 34 (12)\,\alpha_\text{0}$, respectively, where $\alpha_\text{0}$ is the atomic unit for the electric polarizability. We also provide a theoretical model allowing us to predict the excited state polari…

Atomic Physics (physics.atom-ph)chemistry.chemical_elementFOS: Physical sciences01 natural sciencesAtomic units010305 fluids & plasmasPhysics - Atomic Physics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Polarizability0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsAnisotropyDoppler coolingPhysicsCondensed Matter::Quantum GasesQuantum Physics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Polarization (waves)3. Good healthDipolechemistryQuantum Gases (cond-mat.quant-gas)Excited stateDysprosium[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)
researchProduct

FitAik: a package to calculate least-square fitted atomic transitions probabilities. Application to the Er+ lanthanide ion

2022

We present a new method implemented in our new package \textit{FitAik}, to perform least-squares fitting of calculated and experimental atomic transition probabilities, by using the mono-electronic transition integrals $\langle n\ell |r| n'\ell' \rangle$ (with $r$ the electronic radial coordinate) as adjustable quantities. \textit{FitAik} is interfaced to the Cowan suite of codes, for which it automatically writes input files and reads output files. We illustrate our procedure with the example of Er$^{+}$ ion, for which the agreement between calculated and experimental Einstein coefficients is found to be very good. The source code of \emph{FitAik} can be found on GitLab, and the calculated…

Quantum PhysicsAtomic Physics (physics.atom-ph)[PHYS.PHYS.PHYS-GEN-PH] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]FOS: Physical sciencesQuantum Physics (quant-ph)[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]Physics - Atomic Physics
researchProduct

Two-photon optical shielding of collisions between ultracold polar molecules

2022

We propose a method to engineer repulsive long-range interactions between ultracold ground-state molecules using optical fields, thus preventing short-range collisional losses. It maps the microwave coupling recently used for collisional shielding onto a two-photon transition, and takes advantage of optical control techniques. In contrast to one-photon optical shielding [Phys. Rev. Lett. 125, 153202 (2020)], this scheme avoids heating of the molecular gas due to photon scattering. The proposed protocol, exemplified for 23Na39K, should be applicable to a large class of polar diatomic molecules.

Quantum PhysicsFOS: Physical sciencesQuantum Physics (quant-ph)[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
researchProduct