0000000000267843

AUTHOR

J. Cruz

Free field realization of cylindrically symmetric Einstein gravity

Cylindrically reduced Einstein gravity can be regarded as an $SL(2,R)/SO(2)$ sigma model coupled to 2D dilaton gravity. By using the corresponding 2D diffeomorphism algebra of constraints and the asymptotic behaviour of the Ernst equation we show that the theory can be mapped by a canonical transformation into a set of free fields with a Minkowskian target space. We briefly discuss the quantization in terms of these free-field variables, which is considerably simpler than in the other approaches.

research product

Conformal and non-conformal symmetries in 2D dilaton gravity

We introduce new extra symmetry transformations for generic 2D dilaton-gravity models. These symmetries are non-conformal but special linear combinations of them turn out to be the extra (conformal) symmetries of the CGHS model and the model with an exponential potential. We show that one of the non-conformal extra symmetries can be converted into a conformal one by means of adequate field redefinitions involving the metric and the derivatives of the dilaton. Finally, by expressing the Polyakov-Liouville effective action in terms of an auxiliary invariant metric, we construct one-loop models which maintain the extra symmetry of the classical action. © 1997 Elsevier Science B.V.

research product

Free fields via canonical transformations of matter-coupled two-dimensional dilaton gravity models

It is shown that the 1+1-dimensional matter-coupled Jackiw-Teitelboim model and the model with an exponential potential can be converted by means of appropriate canonical transformations into a bosonic string theory propagating on a flat target space with an indefinite signature. This makes it possible to consistently quantize these models in the functional Schroedinger representation thus generalizing recent results on CGHS theory.

research product

Normalization of Killing vectors and energy conservation in two-dimensional gravity

We explicitly show that, in the context of a recently proposed 2D dilaton gravity theory, energy conservation requires the ``natural'' Killing vector to have, asymptotically, an unusual normalization. The Hawking temperature $T_H$ is then calculated according to this prescription.

research product

SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

Abstract Background Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18–49, 50–69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results NNVs were more favourable in su…

research product

A quantum model of Schwarzschild black hole evaporation

We construct a one-loop effective metric describing the evaporation phase of a Schwarzschild black hole in a spherically symmetric null-dust model. This is achieved by quantising the Vaidya solution and by chosing a time dependent quantum state. This state describes a black hole which is initially in thermal equilibrium and then the equilibrium is switched off, so that the black hole starts to evaporate, shrinking to a zero radius in a finite proper time. The naked singularity appears, and the Hawking flux diverges at the end-point. However, a static metric can be imposed in the future of the end-point. Although this end-state metric cannot be determined within our construction, we show tha…

research product

Solvable Models for radiating Black Holes and Area-preserving Diffeomorphisms

Solvable theories of 2D dilaton gravity can be obtained from a Liouville theory by suitable field redefinitions. In this paper we propose a new framework to generate 2D dilaton gravity models which can also be exactly solved in the semiclassical approximation. Our approach is based on the recently introduced scheme to quantize massless scalar fields coupled to 2D gravity maintaining invariance under area-preserving diffeomorphisms and Weyl transformations. Starting from the CGHS model with the new effective action we reestablish the full diffeomorphism invariance by means of an adequate family of field redefinitions. The original theory is therefore mapped into a large family of solvable mo…

research product

Black Hole Evaporation by Thermal Bath Removal

We study the evaporation process of 2D black holes in thermal equilibrium when the incoming radiation is turned off. Our analysis is based on two different classes of 2D dilaton gravity models which are exactly solvable in the semiclassical aproximation including back-reaction. We consider a one parameter family of models interpolating between the Russo-Susskind-Thorlacius and Bose-Parker-Peleg models. We find that the end-state geometry is the same as the one coming from an evaporating black hole formed by gravitational collapse. We also study the quantum evolution of black holes arising in a model with classical action $S = {1\over2\pi} \int d^2x \sqrt{-g} (R\phi + 4\lambda^2e^{\beta\phi}…

research product

Symmetries and solvable models for evaporating 2D black holes

We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is suddenly switched off. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model. © Elsevier Science B.V

research product

Canonical equivalence of a generic 2-D dilaton gravity model and a free field

We show that a canonical transformation converts, up to a boundary term, a generic 2-D dilaton gravity model into a free field theory with a Minkowskian target space.

research product

Free Fields for Chiral 2D Dilaton Gravity

We give an explicit canonical transformation which transforms a generic chiral 2D dilaton gravity model into a free field theory.

research product

Integrable models and degenerate horizons in two-dimensional gravity

We analyse an integrable model of two-dimensional gravity which can be reduced to a pair of Liouville fields in conformal gauge. Its general solution represents a pair of ``mirror'' black holes with the same temperature. The ground state is a degenerate constant dilaton configuration similar to the Nariai solution of the Schwarzschild-de Sitter case. The existence of $\phi=const.$ solutions and their relation with the solution given by the 2D Birkhoff's theorem is then investigated in a more general context. We also point out some interesting features of the semiclassical theory of our model and the similarity with the behaviour of AdS$_2$ black holes.

research product

Precise Determination of the Unperturbed 8B Neutrino Spectrum

The measurement was performed at the Kernfysisch Versneller Instituut (KVI) at the University of Groningen, The Netherlands.; A measurement of the final state distribution of the 8B $\beta$ decay, obtained by implanting a 8B beam in a double-sided silicon strip detector, is reported here. The present spectrum is consistent with a recent independent precise measurement performed by our collaboration at the IGISOL facility, Jyvâskylä [O. S. Kirsebom et al., Phys. Rev. C 83, 065802 (2011)]. It shows discrepancies with previously measured spectra, leading to differences in the derived neutrino spectrum. Thanks to a low detection threshold, the neutrino spectrum is for the first time directly ex…

research product

Can conformal Transformations change the fate of 2D black holes?

By using a classical Liouville-type model of two dimensional dilaton gravity we show that the one-loop theory implies that the fate of a black hole depends on the conformal frame. There is one frame for which the evaporation process never stops and another one leading to a complete disappearance of the black hole. This can be seen as a consequence of the fact that thermodynamic variables are not conformally invariant. In the second case the evaporation always produces the same static and regular end-point geometry, irrespective of the initial state.

research product