6533b826fe1ef96bd12834e2

RESEARCH PRODUCT

A quantum model of Schwarzschild black hole evaporation

José Navarro-salasJ. CruzAleksandar Mikovic

subject

Thermal equilibriumPhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaNaked singularityFOS: Physical sciencesRadiusGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum stateQuantum mechanicsMetric (mathematics)Schwarzschild metricAstronomiaProper time

description

We construct a one-loop effective metric describing the evaporation phase of a Schwarzschild black hole in a spherically symmetric null-dust model. This is achieved by quantising the Vaidya solution and by chosing a time dependent quantum state. This state describes a black hole which is initially in thermal equilibrium and then the equilibrium is switched off, so that the black hole starts to evaporate, shrinking to a zero radius in a finite proper time. The naked singularity appears, and the Hawking flux diverges at the end-point. However, a static metric can be imposed in the future of the end-point. Although this end-state metric cannot be determined within our construction, we show that it cannot be a flat metric.

http://www.scopus.com/inward/record.url?eid=2-s2.0-0010891829&partnerID=MN8TOARS