0000000000268939
AUTHOR
S. E. Panasci
Nanoscale structural and electrical properties of graphene grown on AlGaN by catalyst-free chemical vapor deposition
The integration of graphene (Gr) with nitride semiconductors is highly interesting for applications in high-power/high-frequency electronics and optoelectronics. In this work, we demonstrated the direct growth of Gr on Al0.5Ga0.5N/sapphire templates by propane (C3H8) chemical vapor deposition (CVD) at temperature of 1350{\deg}C. After optimization of the C3H8 flow rate, a uniform and conformal Gr coverage was achieved, which proved beneficial to prevent degradation of AlGaN morphology. X-ray photoemission spectroscopy (XPS) revealed Ga loss and partial oxidation of Al in the near-surface AlGaN region. Such chemical modification of a 2 nm thick AlGaN surface region was confirmed by cross-sec…
Direct atomic layer deposition of ultrathin aluminium oxide on monolayer $MoS_2$ exfoliated on gold: the role of the substrate
In this paper we demonstrated the thermal Atomic Layer Deposition (ALD) growth at 250 {\deg}C of highly homogeneous and ultra-thin ($\approx$ 3.6 nm) $Al_2O_3$ films with excellent insulating properties directly onto a monolayer (1L) $MoS_2$ membrane exfoliated on gold. Differently than in the case of 1L $MoS_2$ supported by a common insulating substrate ($Al_2O_3/Si$), a better nucleation process of the high-k film was observed on the 1L $MoS_2/Au$ system since the ALD early stages. Atomic force microscopy analyses showed a $\approx 50\%$ $Al_2O_3$ surface coverage just after 10 ALD cycles, its increasing up to $>90\%$ (after 40 cycles), and an uniform $\approx$ 3.6 nm film, after 80 cycle…
Substrate impact on the thickness dependence of vibrational and optical properties of large area $MoS_2$ produced by gold-assisted exfoliation
The gold-assisted exfoliation is a very effective method to produce large-area ($cm^2$-scale) membranes of molybdenum disulfide ($MoS_2$) for electronics. However, the strong $MoS_2/Au$ interaction, beneficial for the exfoliation process, has a strong impact on the vibrational and light emission properties of $MoS_2$. Here, we report an atomic force microscopy (AFM), micro-Raman ($\mu-R$) and micro-Photoluminescence ($\mu-PL$) investigation of $MoS_2$ with variable thickness exfoliated on Au and subsequently transferred on an $Al_2O_3/Si$ substrate. The $E_{2g}$ - $A_{1g}$ vibrational modes separation $\Delta\mu$ (typically used to estimate $MoS_2$ thickness) exhibits an anomalous large val…
Aluminum oxide nucleation in the early stages of atomic layer deposition on epitaxial graphene
In this work, the nucleation and growth mechanism of aluminum oxide (Al2O3) in the early stages of the direct atomic layer deposition (ALD) on monolayer epitaxial graphene (EG) on silicon carbide (4H-SiC) has been investigated by atomic force microscopy (AFM) and Raman spectroscopy. Contrary to what is typically observed for other types of graphene, a large and uniform density of nucleation sites was observed in the case of EG and ascribed to the presence of the buffer layer at EG/SiC interface. The deposition process was characterized by Al2O3 island growth in the very early stages, followed by the formation of a continuous Al2O3 film (2.4 nm thick) after only 40 ALD cycles due to the isla…
Strain, doping and electronic transport of large area monolayer MoS2 exfoliated on gold and transferred to an insulating substrate
Gold-assisted mechanical exfoliation currently represents a promising method to separate ultra-large (cm-scale) transition metal dichalcogenides (TMDs) monolayers (1L) with excellent electronic and optical properties from the parent van der Waals (vdW) crystals. The strong interaction between $Au$ and chalcogen atoms is the key to achieve this nearly perfect 1L exfoliation yield. On the other hand, it may affect significantly the doping and strain of 1L TMDs in contact with Au. In this paper, we systematically investigated the morphology, strain, doping, and electrical properties of large area 1L $MoS_{2}$ exfoliated on ultra-flat $Au$ films ($0.16-0.21 nm$ roughness) and finally transferre…