6533b859fe1ef96bd12b6ef3
RESEARCH PRODUCT
Aluminum oxide nucleation in the early stages of atomic layer deposition on epitaxial graphene
R. Lo NigroRositza YakimovaS. E. PanasciFilippo GiannazzoEmanuela SchiliròSimonpietro AgnelloFabrizio RoccaforteFranco Mario Gelardisubject
Materials scienceNucleationFOS: Physical sciencesMaterialkemi02 engineering and technologyIsland growth010402 general chemistry01 natural scienceslaw.inventionAtomic force microscopyAtomic layer depositionsymbols.namesakelawMonolayerMaterials ChemistryGeneral Materials ScienceAtomic layer deposition; Epitaxial graphene; Atomic force microscopy; Raman spectroscopy; NucleationCoalescence (physics)Condensed Matter - Materials ScienceGrapheneAtomic layer depositionSettore FIS/01 - Fisica SperimentaleMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesEpitaxial grapheneChemical engineeringRaman spectroscopyNucleationsymbols0210 nano-technologyRaman spectroscopyLayer (electronics)description
In this work, the nucleation and growth mechanism of aluminum oxide (Al2O3) in the early stages of the direct atomic layer deposition (ALD) on monolayer epitaxial graphene (EG) on silicon carbide (4H-SiC) has been investigated by atomic force microscopy (AFM) and Raman spectroscopy. Contrary to what is typically observed for other types of graphene, a large and uniform density of nucleation sites was observed in the case of EG and ascribed to the presence of the buffer layer at EG/SiC interface. The deposition process was characterized by Al2O3 island growth in the very early stages, followed by the formation of a continuous Al2O3 film (2.4 nm thick) after only 40 ALD cycles due to the islands coalescence, and subsequent layer-by-layer growth. Raman spectroscopy analyses showed low impact of the ALD process on the defects density and doping of EG. The EG strain was also almost unaffected by the deposition in the regime of island growth and coalescence, whereas a significant increase was observed after the formation of a compact Al2O3 film. The obtained results can have important implications for device applications of epitaxial graphene requiring the integration of ultra-thin high-k insulators.
year | journal | country | edition | language |
---|---|---|---|---|
2020-01-01 |