0000000000004859
AUTHOR
Emanuela Schilirò
Nanoscale structural and electrical properties of graphene grown on AlGaN by catalyst-free chemical vapor deposition
The integration of graphene (Gr) with nitride semiconductors is highly interesting for applications in high-power/high-frequency electronics and optoelectronics. In this work, we demonstrated the direct growth of Gr on Al0.5Ga0.5N/sapphire templates by propane (C3H8) chemical vapor deposition (CVD) at temperature of 1350{\deg}C. After optimization of the C3H8 flow rate, a uniform and conformal Gr coverage was achieved, which proved beneficial to prevent degradation of AlGaN morphology. X-ray photoemission spectroscopy (XPS) revealed Ga loss and partial oxidation of Al in the near-surface AlGaN region. Such chemical modification of a 2 nm thick AlGaN surface region was confirmed by cross-sec…
Direct atomic layer deposition of ultrathin aluminium oxide on monolayer $MoS_2$ exfoliated on gold: the role of the substrate
In this paper we demonstrated the thermal Atomic Layer Deposition (ALD) growth at 250 {\deg}C of highly homogeneous and ultra-thin ($\approx$ 3.6 nm) $Al_2O_3$ films with excellent insulating properties directly onto a monolayer (1L) $MoS_2$ membrane exfoliated on gold. Differently than in the case of 1L $MoS_2$ supported by a common insulating substrate ($Al_2O_3/Si$), a better nucleation process of the high-k film was observed on the 1L $MoS_2/Au$ system since the ALD early stages. Atomic force microscopy analyses showed a $\approx 50\%$ $Al_2O_3$ surface coverage just after 10 ALD cycles, its increasing up to $>90\%$ (after 40 cycles), and an uniform $\approx$ 3.6 nm film, after 80 cycle…
Graphene‐SiO2 Interaction from Composites to Doping
An overview of the interaction between monolayer graphene and SiO2 dielectric substrate is reported focusing on the effect this latter has on doping and strain induced by thermal treatments in controlled atmosphere. The disentanglement of strain and doping is highlighted and the comparison with another dielectric substrate of Al2O3 evidences the critical role that the substrate has in the electronic properties of graphene. The reported results pave the way for microelectronic devices based on graphene on dielectrics and for Fermi level tuning in composites of graphene and nanoparticles.
Electron Irradiation Effects on Single‐Layer MoS 2 Obtained by Gold‐Assisted Exfoliation
International audience; Mechanical exfoliation assisted by gold is applied to obtain good quality large lateral size single-layer MoS2. The effects of 2.5 MeV electron irradiation are investigated at room temperature on structural and electronic features by Raman and microluminescence spectroscopy. The exciton recombination emission in the direct bandgap of single-layer MoS2 is affected during irradiation starting from the minimum explored dose of 1 kGy. At higher doses, Raman bands show no relevant modifications whereas the exciton emission is quenched, suggesting that irradiation-induced point defects affect exciton dynamics.
Substrate impact on the thickness dependence of vibrational and optical properties of large area $MoS_2$ produced by gold-assisted exfoliation
The gold-assisted exfoliation is a very effective method to produce large-area ($cm^2$-scale) membranes of molybdenum disulfide ($MoS_2$) for electronics. However, the strong $MoS_2/Au$ interaction, beneficial for the exfoliation process, has a strong impact on the vibrational and light emission properties of $MoS_2$. Here, we report an atomic force microscopy (AFM), micro-Raman ($\mu-R$) and micro-Photoluminescence ($\mu-PL$) investigation of $MoS_2$ with variable thickness exfoliated on Au and subsequently transferred on an $Al_2O_3/Si$ substrate. The $E_{2g}$ - $A_{1g}$ vibrational modes separation $\Delta\mu$ (typically used to estimate $MoS_2$ thickness) exhibits an anomalous large val…
Seed‐Layer‐Free Atomic Layer Deposition of Highly Uniform Al 2 O 3 Thin Films onto Monolayer Epitaxial Graphene on Silicon Carbide
Atomic layer deposition (ALD) is the method of choice to obtain uniform insulating films on graphene for device applications. Owing to the lack of out-of-plane bonds in the sp(2) lattice of graphene, nucleation of ALD layers is typically promoted by functionalization treatments or predeposition of a seed layer, which, in turn, can adversely affect graphene electrical properties. Hence, ALD of dielectrics on graphene without prefunctionalization and seed layers would be highly desirable. In this work, uniform Al2O3 films are obtained by seed-layer-free thermal ALD at 250 degrees C on highly homogeneous monolayer (1L) epitaxial graphene (EG) (amp;gt;98% 1L coverage) grown on on-axis 4H-SiC(00…
Temperature and time dependent electron trapping in Al2O3 thin films onto AlGaN/GaN heterostructures
In this article, the charge trapping phenomena in Al2O3 thin films grown by atomic layer deposition (ALD) on AlGaN/GaN heterostructures have been studied by time-dependent capacitance–voltage (C-V) measurements as a function of temperature. In particular, monitoring the transient of the capacitance enabled us to estimate the maximum depth of the insulating layer interested by the negative charge trapping effect under our bias stress conditions and to determine a charge traps density in the bulk Al2O3 in the order of 3 × 1019 cm−3. A temperature dependent C-V analysis up to 150 °C demonstrated the presence of two competitive mechanisms that rule the electron capture and emission in the Al2O3…
Influence of oxide substrates on monolayer graphene doping process by thermal treatments in oxygen
Abstract The structural and the electronic properties of monolayer graphene made by chemical vapor deposition and transferred on various oxide substrates ( SiO 2 , Al 2 O 3 , and HfO 2 ) are investigated by Raman Spectroscopy and Atomic Force Microscopy in order to highlight the influence of the substrate on the features of p-doping obtained by O 2 thermal treatments. By varing the treatment temperature up to 400 °C, the distribution of the reaction sites of the substrates is evaluated. Their total concentration and the consequent highest doping available is determined and it is shown that this latter is linked to the water affinity of the substrate. Finally, by varing the exposure time to …
Photoinduced charge transfer from Carbon Dots to Graphene in solid composite
Abstract The emission in solid phase of Carbon Dots (CDs) deposited by drop-casting technique is investigated by means of micro-photoluminescence. Graphene and SiO2 are used as substrates, and the influence of their different nature – conductive or insulating – on the emission of CDs is highlighed. In particular, a systematic loss of efficiency in the emission of CDs on graphene is found, suggesting a CD-graphene interaction possibly due to a photoinduced electron transfer between the surface states of CDs and the conduction band of graphene. Finally, thanks to the negligible influence on CDs emission, SiO2 substrate is used as support to perform thermal processing of CDs in solid phase, sh…
Highly Homogeneous 2D/3D Heterojunction Diodes by Pulsed Laser Deposition of MoS2 on Ion Implantation Doped 4H-SiC
In this paper, 2D/3D heterojunction diodes have been fabricated by pulsed laser deposition (PLD) of MoS2 on 4H-SiC(0001) surfaces with different doping levels, i.e., n− epitaxial doping (≈1016 cm−3) and n+ ion implantation doping (>1019 cm−3). After assessing the excellent thickness uniformity (≈3L-MoS2) and conformal coverage of the PLD-grown films by Raman mapping and transmission electron microscopy, the current injection across the heterojunctions is investigated by temperature-dependent current–voltage characterization of the diodes and by nanoscale current mapping with conductive atomic force microscopy. A wide tunability of the transport properties is shown by the SiC surface dopi…
Carbon Dots Dispersed on Graphene/SiO2/Si: A Morphological Study
Low-dimensional carbon materials occupy a relevant role in the field of nanotechnology. Herein, the authors report a study conducted by atomic force microscopy and Raman spectroscopy on the deposition of carbon dots onto graphene surfaces. The study aims at understanding if and how the morphology and the microstructure of chemical vapor deposited graphene on Si/SiO2 may change due to the interaction with the carbon dots. Potential alteration in the graphene's electrical properties might be detrimental for optoelectronic applications. The deposition of carbon dots dispersed in water and ethanol solvents are explored to investigate the effect of solvents with different fluidic properties. The…
Multiscale Investigation of the Structural, Electrical and Photoluminescence Properties of MoS2 Obtained by MoO3 Sulfurization
In this paper, we report a multiscale investigation of the compositional, morphological, structural, electrical, and optical emission properties of 2H-MoS2 obtained by sulfurization at 800 °C of very thin MoO3 films (with thickness ranging from ~2.8 nm to ~4.2 nm) on a SiO2/Si substrate. XPS analyses confirmed that the sulfurization was very effective in the reduction of the oxide to MoS2, with only a small percentage of residual MoO3 present in the final film. High-resolution TEM/STEM analyses revealed the formation of few (i.e., 2–3 layers) of MoS2 nearly aligned with the SiO2 surface in the case of the thinnest (~2.8 nm) MoO3 film, whereas multilayers of MoS2 partially standing up with r…
Dynamic modification of Fermi energy in single-layer graphene by photoinduced electron transfer from carbon dots
Graphene (Gr)&mdash
Aluminum oxide nucleation in the early stages of atomic layer deposition on epitaxial graphene
In this work, the nucleation and growth mechanism of aluminum oxide (Al2O3) in the early stages of the direct atomic layer deposition (ALD) on monolayer epitaxial graphene (EG) on silicon carbide (4H-SiC) has been investigated by atomic force microscopy (AFM) and Raman spectroscopy. Contrary to what is typically observed for other types of graphene, a large and uniform density of nucleation sites was observed in the case of EG and ascribed to the presence of the buffer layer at EG/SiC interface. The deposition process was characterized by Al2O3 island growth in the very early stages, followed by the formation of a continuous Al2O3 film (2.4 nm thick) after only 40 ALD cycles due to the isla…
Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere
Time dynamics of doping and strain induced in single layer graphene by thermal treatments up to 300 degrees C in vacuum, nitrogen, carbon dioxide and oxygen controlled atmosphere are deeply studied by Raman spectroscopy and they are compared with its morphological evolution investigated by Atomic Force Microscopy. The reaction dynamics in oxygen treatments is determined down to a time scale of few minutes as well as that of dedoping process made by water vapor treatment. The interplay of strain modification and doping effects is separated. The strain is clarified to be strongly influenced by the cooling time. The doping removal is dominated by the water vapor, showing that the concentration…