0000000000269788

AUTHOR

Oscar Gonzalez-perez

0000-0002-6527-485x

Subventricular zone localized irradiation affects the generation of proliferating neural precursor cells and the migration of neuroblasts

Radiation therapy is a part of the standard treatment for brain tumor patients, often resulting in irreversible neuropsychological deficits. These deficits may be due to permanent damage to the neural stem cell (NSC) niche, damage to local neural progenitors, or neurotoxicity. Using a computed tomography-guided localized radiation technique, we studied the effects of radiation on NSC proliferation and neuroblast migration in the mouse brain. Localized irradiation of the subventricular zone (SVZ) eliminated the proliferating neural precursor cells and migrating neuroblasts. After irradiation, type B cells in the SVZ lacked the ability to generate migrating neuroblasts. Neuroblasts from the u…

research product

Long-term hydrocephalus alters the cytoarchitecture of the adult subventricular zone

Hydrocephalus can develop secondarily to a disturbance in production, flow and/or absorption of cerebrospinal fluid. Experimental models of hydrocephalus, especially subacute and chronic hydrocephalus, are few and limited, and the effects of hydrocephalus on the subventricular zone are unclear. The aim of this study was to analyze the effects of long-term obstructive hydrocephalus on the subventricular zone, which is the neurogenic niche lining the lateral ventricles. We developed a new method to induce hydrocephalus by obstructing the aqueduct of Sylvius in the mouse brain, thus simulating aqueductal stenosis in humans. In 120-day-old rodents (n = 18 per group), the degree of ventricular d…

research product

Neural Stem Cells in the Adult Brain: From Benchside to Clinic

Increasing evidence indicates that neural stem cells (NSCs) play an important role in sustaining cellular homeostasis and brain tissue restoration. The study of all mechanisms that control and modulate the function of NSC is a crucial step for the design of therapies against chronic neurodegenerative processes. In this special issue of the journal, we had the pleasure to edit the topic entitled “Neural Stem Cells in the Adult Brain: From Benchside to Clinic.” This special compilation of paper was aimed to provide a global forum for publications of original peer-reviewed manuscripts that reported original research findings in the field of adult neural stem cell, including short communication…

research product

Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain

Neural progenitor cells (NPCs) reside within the subventricular zone (SVZ) in rodents. These NPCs give rise to neural precursors in adults that migrate to the olfactory bulb (OB) along a well-defined pathway, the rostral migratory stream (RMS). Here we demonstrate that these NPCs can be labeled, in vivo, in adult rats with fluorescent, micron-sized iron oxide particles (MPIOs), and that magnetic resonance imaging (MRI) can detect migrating neural precursors carrying MPIOs along the RMS to the OB. Immunohistochemistry and electron microscopy indicated that particles were inside GFAP(+) neural progenitor cells in the SVZ, migrating PSA-NCAM(+) and Doublecortin(+) neural precursors within the …

research product

Intra-operatively obtained human tissue: Protocols and techniques for the study of neural stem cells

The discoveries of neural (NSCs) and brain tumor stem cells (BTSCs) in the adult human brain and in brain tumors, respectively, have led to a new era in neuroscience research. These cells represent novel approaches to studying normal phenomena such as memory and learning, as well as pathological conditions such as Parkinson's disease, stroke, and brain tumors. This new paradigm stresses the importance of understanding how these cells behave in vitro and in vivo. It also stresses the need to use human-derived tissue to study human disease because animal models may not necessarily accurately replicate the processes that occur in humans. An important, but often underused, source of human tissu…

research product

The human brain subventricular zone: stem cells in this niche and its organization.

The human brain harbors stem cells in the subventricular zone (SVZ). The authors have collected postmortem and intraoperative tissue from adult human patients and found that it contains a unique ribbon of astrocytes that proliferate in vivo and can function as neural stem cells in vitro. Furthermore, they have conducted an anatomic, cytoarchitectural, and ultrastructural study in complete postmortem brains to define the precise organization of the lateral walls of the human lateral ventricles. With immunohistochemistry, the authors mapped a proliferative glial fibrillary acidic protein (GFAP)--positive ribbon of astrocytic cells in the human SVZ. In this article, the authors report on four …

research product

New neurons follow the flow of cerebrospinal fluid in the adult brain

Autores: Sawamoto, K. et al. .- PMID:16410488

research product

Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cells

The lateral wall of the lateral ventricle in the human brain contains neural stem cells throughout adult life. We conducted a cytoarchitectural and ultrastructural study in complete postmortem brains (n = 7) and in postmortem (n = 42) and intraoperative tissue (n = 43) samples of the lateral walls of the human lateral ventricles. With varying thickness and cell densities, four layers were observed throughout the lateral ventricular wall: a monolayer of ependymal cells (Layer I), a hypocellular gap (Layer II), a ribbon of cells (Layer III) composed of astrocytes, and a transitional zone (Layer IV) into the brain parenchyma. Unlike rodents and nonhuman primates, adult human glial fibrillary a…

research product

Preservation of glial cytoarchitecture from ex vivo human tumor and non-tumor cerebral cortical explants: A human model to study neurological diseases

For the human brain, in vitro models that accurately represent what occurs in vivo are lacking. Organotypic models may be the closest parallel to human brain tissue outside of a live patient. However, this model has been limited primarily to rodent-derived tissue. We present an organotypic model to maintain intraoperatively collected human tumor and non-tumor explants ex vivo for a prolonged period of time (similar to 11 days) without any significant changes to the tissue cytoarchitecture as evidenced through immunohistochemistry and electron microscopy analyses. The ability to establish and reliably predict the cytoarchitectural changes that occur with time in an organotypic model of tumor…

research product