0000000000269808

AUTHOR

Paola Oliveri

Homeobox-containing gene transiently expressed in a spatially restricted pattern in the early sea urchin embryo

In the sea urchin embryo, the lineage founder cells whose polyclonal progenies will give rise to five different territories are segregated at the sixth division. To investigate the mechanisms by which the fates of embryonic cells are first established, we looked for temporal and spatial expression of homeobox genes in the very early cleavage embryos. We report evidence that PlHbox12, a paired homeobox-containing gene, is expressed in the embryo from the 4-cell stage. The abundance of the transcripts reaches its maximum when the embryo has been divided into the five polyclonal territories--namely at the 64-cell stage--and it abruptly declines at later stages of development. Blastomere dissoc…

research product

Spatially restricted expression of PlOtp, a Paracentrotus lividus Orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos

ABSTRACT Several homeobox genes are expressed in the sea urchin embryo but their roles in development have yet to be elucidated. Of particular interest are homologues of homeobox genes that in mouse and Drosophila are involved in patterning the developing central nervous system (CNS). Here, we report the cloning of an orthopedia (Otp)-related gene from Paracentrotus lividus, PlOtp. Otp is a single copy zygotic gene that presents a unique and highly restricted expression pattern. Transcripts were first detected at the mid-gastrula stage in two pairs of oral ectoderm cells located in a ventrolateral position, overlying primary mesenchyme cell (PMC) clusters. Increases in both transcript abund…

research product

Gene expression during early embryogenesis of sea urchin: The histone and homeobox genes

Transcriptional regulators are thought to play a key role in cell fate determination and territorial specification in sea urchin. Our goals are to clone transcription factors for studying embryonic development. One approach has been to use promoter binding and gene transfer technology to investigate the mechanisms of transcriptional activation and repression of the early H2A histone gene. By this analysis we identified a transcriptional activator, the MBF-1, that binds to the modulator element of the H2A gene and enhances the activity of the H2A promoter. However, the enhancer activity of the modulator and its interaction with MBF-1 also occurs at the gastrula stage when the early histone g…

research product

Expression of homeobox-containing genes in the sea urchin (Parancentrotus lividus) embryo

Two homeobox-containing genes that belong to different homeodomain classes have been isolated from a sea urchin geonomic library. One, PlHbox11, is the sea urchin homologue of the human and mouse Hox B3 gene, the other, PlHbox12, shows about 55% identity with paired class genes. Expression profile analysis of the two sea urchin Hbox genes suggests that they play different roles during embryogenesis. In fact, PlHbox11 transcripts are rare and are detected only in the pluteus larva and in the Aristotle's lantern and intestine of the adult. The PlHbox12 gene is, on the contrary, transiently expressed in the very early embryo already at the four cell stage; it accumulates at the 64 cell stage a…

research product

The Genome of the Sea Urchin Strongylocentrotus purpuratus

We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus , a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.

research product

Maristem stem cells of marine/aquatic invertebrates: from basic research to innovative applications

The “stem cells” discipline represents one of the most dynamic areas in biomedicine. While adult marine/aquatic invertebrate stem cell (MISC) biology is of prime research and medical interest, studies on stem cells from organisms outside the classical vertebrate (e.g., human, mouse, and zebrafish) and invertebrate (e.g., Drosophila, Caenorhabditis) models have not been pursued vigorously. Marine/aquatic invertebrates constitute the largest biodiversity and the widest phylogenetic radiation on Earth, from morphologically simple organisms (e.g., sponges, cnidarians), to the more complex mollusks, crustaceans, echinoderms, and protochordates. These organisms contain a kaleidoscope of MISC-type…

research product

Homeobox genes and sea urchin development.

We describe the expression of three Paracentrotus lividus homeobox-containing genes of the dispersed class during sea urchin embryogenesis and discuss their possible roles in the mechanisms of cell specification and embryo morphogenesis. PIHbox12 represents the first regulator identified in sea urchin that belongs to the zygotic class of transcription factors. Its early and transient expression and the localization of transcripts suggests that PIHbox12 is involved in cell fate specification of the oral or aboral ectodermal territories at the early cleavage stages. PIHbox9 is expressed just after the completion of gastrulation in a narrow stripe of cells at the ectoderm-endoderm boundary. It…

research product