0000000000273620

AUTHOR

Hans Peter Oepen

showing 4 related works from this author

Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity

1997

Abstract With the improved access to synchrotron radiation sources photoemission electron microscopy is developing into a versatile analytical tool in surface and materials science. The broad spectral range and the well-defined polarization characteristics of synchrotron light permit a unique combination of topographic, chemical, and even magnetic investigations down to a mesoscopic scale. The potentiality of photoemission electron microscopy is demonstrated by several experiments on surfaces and microstructured thin film systems, which have been carried out with a newly designed instrument. We discuss its different modes of operation with respect to both microscopy and spectroscopy. A comb…

RadiationMaterials sciencebusiness.industryMagnetic circular dichroismSynchrotron radiationAngle-resolved photoemission spectroscopyCondensed Matter PhysicsPolarization (waves)Atomic and Molecular Physics and OpticsSynchrotronElectronic Optical and Magnetic Materialslaw.inventionCondensed Matter::Materials SciencePhotoemission electron microscopyOpticslawMicroscopyPhysical and Theoretical ChemistryThin filmbusinessSpectroscopyJournal of Electron Spectroscopy and Related Phenomena
researchProduct

Ultrafast Optical Demagnetization manipulates Nanoscale Spin Structure in Domain Walls

2012

During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic dem…

DYNAMICSMagnetic domainGeneral Physics and AstronomyMAGNETIZATION REVERSALPhysics::OpticsLarge scale facilities for research with photons neutrons and ionsNanotechnology02 engineering and technologyElectronFILMS01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyOptical pumping0103 physical sciencesddc:530010306 general physicsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]MultidisciplinaryCondensed matter physicsSpins[PHYS.PHYS]Physics [physics]/Physics [physics]Demagnetizing fieldALLOYGeneral Chemistry021001 nanoscience & nanotechnologyPicosecondFemtosecondX-RAYLASER0210 nano-technologyUltrashort pulse
researchProduct

Ultrafast Dynamics of Magnetic Domain Structures Probed by Coherent Free-Electron Laser Light

2013

Synchrotron radiation news 26(6), 27 - 32 (2013). doi:10.1080/08940886.2013.850384

Nuclear and High Energy PhysicsMagnetic domainMagnetismAstrophysics::High Energy Astrophysical Phenomena02 engineering and technology53001 natural scienceslaw.inventionOpticslaw0103 physical sciencesddc:530010306 general physicsComputingMilieux_MISCELLANEOUSPhysicsMagnetic circular dichroismbusiness.industryScatteringFree-electron laser021001 nanoscience & nanotechnologyLaserAtomic and Molecular Physics and Optics[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Physics::Accelerator PhysicsAtomic physics0210 nano-technologybusinessUltrashort pulseFermi Gamma-ray Space TelescopeSynchrotron Radiation News
researchProduct

Nonadiabatic spin-transfer torque of magnetic vortex structures in a permalloy square

2014

The stationary displacement of a magnetic vortex core in a permalloy square caused by an ultrahigh direct current has been measured utilizing scanning electron microscopy with polarization analysis. Data have been analyzed for three different generic states of the Landau structure and up to a current density of $3\ifmmode\times\else\texttimes\fi{}{10}^{11}\mathrm{A}/{\mathrm{m}}^{2}$. This procedure allows for separating the effects caused by the Oersted field, the nonadiabatic, and the adiabatic spin-transfer torque. In addition, the spin polarization of the driving current $P=(65\ifmmode\pm\else\textpm\fi{}4)%$ is independently determined from the spin drift velocity of ${v}_{j}=(4.79\ifm…

PhysicsPermalloyDrift velocityCondensed matter physicsSpin polarizationSpin-transfer torqueCondensed Matter PhysicsPolarization (waves)Ferromagnetic resonanceCurrent densityElectronic Optical and Magnetic MaterialsVortexPhysical Review B
researchProduct