0000000000273876

AUTHOR

Teuta Gasi

Biferrocene Amino Acid, a Ferrocenylogoue of Ferrocene Amino Acid: Synthesis, Cross-Linking, and Redox Chemistry

Access of the novel biferrocene amino acid 7 is provided by two different routes, namely, via desymmetrization of a biferrocene and via palladium-catalyzed cross-coupling of two substituted ferrocenes. The dissymmetric biferrocene 7 is head−head coupled to ureylene-bridged bis(biferrocene) 9 and also head−tail coupled to amide-bridged bis(biferrocene) 14. The monomer 7 and the dimers 9 and 14 are oxidized to mixed-valent cations 7+, 9+, 92+, and 142+. The valencies are trapped in the solid state as shown by Mossbauer and EPR spectroscopy and by X-ray diffraction analysis of [7](I3). Paramagnetic NMR shift studies (7 → 7+) suggest that the hole is localized at the N-substituted ferrocene uni…

research product

Formation and mixed-valent behaviour of a substituted tetraferrocenylstannane.

A tetrasubstituted tetraferrocenylstannane is formed from 1-bromoferrocene-1′-carboxylic acid methyl ester and copper bronze. The molecular structure is almost perfectly tetrahedral with Fe⋯Fe distances of around 6 A. In solution two sequential one-electron processes and one two-electron process are indicative of mixed-valent intermediates. Intermetallic interactions have been probed by preparative oxidation, paramagnetic NMR spectroscopy, Mosbauer spectroscopy, UV/Vis/NIR spectroscopy and DFT calculations.

research product

Synthesis, characterization and functionalization of nearly mono-disperse copper ferrite CuxFe3−xO4 nanoparticles

Magnetic nanocrystals are of great interest for a fundamental understanding of nanomagnetism and for their technological applications. CuxFe3−xO4 nanocrystals (x ≈ 0.32) with sizes ranging between 5 and 7 nm were synthesized starting from Cu(HCOO)2 and Fe(CO)5 using oleic acid and oleylamine as surfactants. The nanocrystals were characterized by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), magnetization studies and Mossbauer spectroscopy. The CuxFe3−xO4 particles are superparamagnetic at room temperature 300 K with a saturation magnetization of 30.5 emu g−1. Below their blocking temperature of 60 K, they become ferrimagnetic, and at 5 K they show a co…

research product

Ni@Fe2O3 heterodimers: controlled synthesis and magnetically recyclable catalytic application for dehalogenation reactions

Ni@Fe2O3 heterodimer nanoparticles (NPs) were synthesized by thermal decomposition of organometallic reactants. After functionalization, these Ni@Fe2O3 heterodimers became water soluble. The pristine heterodimeric NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Mossbauer spectroscopy and magnetic susceptibility measurements. A special advantage of the heterodimers lies in the fact that nanodomains of different composition can be used as catalysts for the removal of environmentally hazardous halogenated pollutants.

research product

Iron-based Heusler compounds Fe2YZ: Comparison with theoretical predictions of the crystal structure and magnetic properties

The present work reports on the new soft ferromagnetic Heusler phases Fe${}_{2}$NiGe, Fe${}_{2}$CuGa, and Fe${}_{2}$CuAl, which in previous theoretical studies have been predicted to exist in a tetragonal Heusler structure. Together with the known phases Fe${}_{2}$CoGe and Fe${}_{2}$NiGa these materials have been synthesized and characterized by powder x-ray diffraction, ${}^{57}$Fe M\"ossbauer spectroscopy, superconducting quantum interference device, and energy-dispersive x-ray measurements. In particular M\"ossbauer spectroscopy was used to monitor the degree of local atomic order/disorder and to estimate magnetic moments at the Fe sites from the hyperfine fields. It is shown that in con…

research product

Oligonuclear Ferrocene Amides: Mixed‐Valent Peptides and Potential Redox‐Switchable Foldamers

Trinuclear ferrocene tris-amides were synthesized from an Fmoc- or Boc-protected ferrocene amino acid, and hydrogen-bonded zigzag conformations were determined by NMR spectroscopy, molecular modelling, and X-ray diffraction. In these ordered secondary structures orientation of the individual amide dipole moments approximately in the same direction results in a macrodipole moment similar to that of α-helices composed of α-amino acids. Unlike ordinary α-amino acids, the building blocks in these ferrocene amides with defined secondary structure can be sequentially oxidized to mono-, di-, and trications. Singly and doubly charged mixed-valent cations were probed experimentally by Vis/NIR, param…

research product

The effect of Fe doping on superconductivity in ZrRuP

Abstract This work reports the structure and superconducting properties of the superconductor ZrRuP doped with Fe; the ZrRu 1− x Fe x P solid solution was investigated by means of X-ray powder diffraction, SQUID magnetometry and Mosbauer spectroscopy. It is shown that the modification of the superconducting properties by doping with Fe is similar to the effect of chemical pressure and that the Fe doped compounds do not show any magnetic ordering.

research product

Structural and magnetic properties of Fe2CoGa Heusler nanoparticles

Abstract Fe2CoGa Heusler nanoparticles are synthesized by a chemical method. The structure and magnetic properties of Fe2CoGa Heusler nanoparticles are investigated by x-ray diffraction, extended x-ray absorption fine structure and Mössbauer spectroscopy. The crystal structure of Fe2CoGa nanoparticles is described by the X-type structure (prototype: Li2AgSb). Magnetic measurements reveal the presence of small Fe2CoGa nanoparticles and lower magnetic moments compared with the theoretically predicted values.

research product

Design Scheme of New Tetragonal Heusler Compounds for Spin-Transfer Torque Applications and its Experimental Realization

Band Jahn-Teller type structural instabilities of cubic Mn(2)YZ Heusler compounds causing tetragonal distortions can be predicted by ab initio band-structure calculations. This allows for identification of new Heusler materials with tunable magnetic and structural properties that can satisfy the demands for spintronic applications, such as in spin-transfer torque-based devices.

research product

Density of Phonon States in Superconducting FeSe as a Function of Temperature and Pressure

The temperature and pressure dependence of the partial density of phonon states (phonon-DOS) of iron atoms in superconducting ${\text{Fe}}_{1.01}\text{Se}$ was studied by $^{57}\text{F}\text{e}$ nuclear inelastic scattering. The high-energy resolution allows for a detailed observation of spectral properties. A sharpening of the optical phonon modes and shift of all spectral features toward higher energies by $\ensuremath{\sim}4\mathrm{%}$ with decreasing temperature from 296 to 10 K was found. However, no detectable change at the tetragonal--orthorhombic phase transition around 100 K was observed. Application of a pressure of 6.7 GPa, connected with an increase in the superconducting temper…

research product

Controlling phase formation in solids: rational synthesis of phase separated Co@Fe2O3 heteroparticles and CoFe2O4 nanoparticles

A wet chemical approach from organometallic reactants allowed the targeted synthesis of Co@Fe(2)O(3) heterodimer and CoFe(2)O(4) ferrite nanoparticles. They display magnetic properties that are useful for magnetic MRI detection.

research product

Magnetic polyorganosiloxane core–shell nanoparticles: Synthesis, characterization and magnetic fractionation

Abstact Here, we present the synthesis, characterization and magnetic separation of magnetic polyorganosiloxane nanoparticles. Magnetic iron oxide nanoparticles with average particle radii of 3.2 nm had been synthesized by a simple coprecipitation process of iron(II) and iron(III) salt in basic solution. Afterwards, the particles were successfully incorporated into a polyorganosiloxane network via a polycondensation reaction of trimethoxymethylsilane (T), diethoxydimethylsilane (D) and the functional monomer (chloromethylphenyl)trimethoxysilane (ClBz-T) in aqueous dispersion. A core–shell system was chosen to increase the flexibility of the system concerning size, composition and functional…

research product

Probing the Size Effect of Co2FeGa-SiO2@C Nanocomposite Particles Prepared by a Chemical Approach

In this contribution, we report the chemical synthesis of carbon coated, silica supported Co2FeGa (Co2FeGa-SiO2@C) nanocomposite particles. The particle size of Co2FeGa particles can be tuned by varying the amount of silica supports. The dependences of the crystal structure and magnetic properties on particle size have been investigated by synchrotron radiation based X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) spectroscopy, transmission electron microscope (TEM), 57Fe Mossbauer spectroscopy, and superconducting quantum interference device (SQUID). The superparamagnetic critical size of Co2FeGa Heusler nanoparticles is found to be ∼17 nm by correlating the TEM derived par…

research product

Electroless synthesis of lepidocrocite (γ-FeOOH) nanotubes in ion track etched polycarbonate templates

In this study, we describe the electroless synthesis of lepidocrocite (γ-FeOOH) nanotubes produced in ion track etched polycarbonate foils. The foils act as templates after they had been irradiated with heavy ions to produce latent tracks that were etched with a desired diameter. Templates are used to fabricate shape formed 1D nanostructures in general. The synthesis of lepidocrocite nanotubes was carried out in a simple two-step method: firstly, particles were formed by precipitation in aqueous solution; secondly, nanotubes were produced by the deposition of the particles inside the nanochannels of the polycarbonate template. Solvent effects were considered to achieve homogeneous growth re…

research product