0000000000273982
AUTHOR
Andrea I. Flossmann
A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part II: The Uptake and Redistribution Of (NH4)2SO4Particles and SO2Gas Simultaneously Scavenged by Growing Cloud Drops
Abstract A theoretical model has been formulated which allows the processes which control the wet deposition of atmospheric aerosol particles and pollutant gases to be included in cloud dynamic models. The cloud considered in the model was allowed to grow by condensation and collision–coalescence, to remove aerosol particles by nucleation and impaction scavenging, and to remove pollutant gases by convective diffusion. The model was tested by using a simple air-parcel model as the dynamic framework. In this form the model was used to determine the fate of ammonium sulfate [(NH4)2SO4] particles and sulfur dioxide (SO2) gas as they became scavenged by cloud and precipitation drops. Special emp…
The scavenging of two different types of marine aerosol particles calculated using a two-dimensional detailed cloud model
Our 2-D dynamic model including spectral microphysics and scavenging has been evaluated for a warm precipitating convective cloud at Day 261 (18 September 1974) of the GATE campaign. Two different chemical species ((NH 4 ) 2 SO 4 and NaCl) of aerosol particles were followed in the air, inside the drops in the cloud, and inside the drops reaching the ground. Concerning the dynamics and microphysics, as well as the scavenging and wet deposition, the model results agree quite well with available observations. The cloud rained after 19 min of cloud life time. For the considered aerosol loading of the atmosphere, rough estimates are derived for the total material processed by such a warm convect…
A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part V: The Uptake, Redistribution, and Deposition of (NM4)4SO4by a Convective Cloud Containing Ice
Abstract The effects of an ice phase on the wet deposition of aerosol particles was studied by means of the authors’ 2D cloud dynamics model with spectral microphysics applied to the Cooperative Convective Precipitation Experiment in Miles City, Montana, on 19 July 1981. The cloud macrostructure as well as the cloud microstructure simulated by the model was found to agree well with observations. Although no on-site observations were available with respect to the chemical composition of the cloud and rain water, the values predicted by the model compared well with typical nearby measurements. The following conclusions can be derived from the model computations: (1) In confirmation of the aut…
A theoretical study of the wet removal of atmospheric pollutants. Part I: the redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops.
Abstract A theoretical model is formulated which allows the processes that control the wet deposition of atmospheric pollutants to be included in cloud dynamic models. The model considers the condensation process and the collision-coalescence process which, coupled together, control the fate of atmospheric aerosol particles removed by clouds and precipitation through nucleation scavenging and impaction scavenging. The model was tested by substituting a simple parcel model for the dynamic framework. In this form the model was used to determine the time evolution of the aerosol particle mass scavenged by drops as well as the aerosol particle mass left unactivated in air as “drop-interstitial”…
Cloud and Fog Effects and Their Parameterisation in Regional Air Quality Models
For the special purpose of cloud chemistry a tool ASOCC was developed which is able to generate a differential equation system from a given set of chemical kinetics equations. Sensitivity and structure analysis have been performed to evaluate the great number of investigated reactions in the liquid phase and to derive a condensed mechanism for use in regional chemistry-transport models.
Phase partitioning of aerosol particles in clouds at Kleiner Feldberg
The partitioning of aerosol particles between cloud droplets and interstitial air by number and volume was determined both in terms of an integral value and as a function of size for clouds on Mt. Kleiner Feldberg (825 m asl), in the Taunus Mountains north-west of Frankfurt am Main, Germany. Differences in the integral values and the size dependent partitioning between two periods during the campaign were observed. Higher number and volume concentrations of aerosol particles in the accumulation mode were observed during Period II compared to Period I. In Period I on average 87 ± 11% (±one standard deviation) and 73 ± 7% of the accumulation mode volume and number were incorporated into cloud…
The Kleiner Feldberg Cloud Experiment 1990. An overview
An overview is given of the Kleiner Feldberg cloud experiment performed from 27 October until 13 November 1990. The experiment was carried out by numerous European research groups as a joint effort within the EUROTRAC-GCE project in order to study the interaction of cloud droplets with atmospheric trace constituents. After a description of the observational site and the measurements which were performed, the general cloud formation mechanisms encountered during the experiment are discussed. Special attention is given here to the process of moist adiabatic lifting. Furthermore, an overview is given regarding the pollutant levels in the gas phase, the particulate and the liquid phase, and som…
Theoretical Investigations of the Wet Deposition of Atmospheric Pollutants
A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part III: The Uptake, Redistribution, and Deposition of (NH4)2SO4Particles by a Convective Cloud Using a Two-Dimensional Cloud Dynamics Model
Abstract Our model for the scavenging of aerosol particles has been coupled with the two-dimensional form of the convective cloud model of Clark and Collaborators. The combined model was then used to simulate a convective warm cloud for the meteorological situation which existed at 1100 LST 12 July 1985 over Hawaii; assuming an aerosol size distribution of maritime number concentration and of mixed composition with (NH4)2SO4 as the soluble compound. A shallow model cloud developed 26 min after the onset of convection leading to moderate rain which began after 45 min and ended after 60 min. Various parameters which characterize the dynamics and micophysics of the cloud, as well as the scaven…