0000000000274177

AUTHOR

Jose M. Blanes

On the design of a multiple-output DC/DC converter for the PHI experiment on-board of solar orbiter

Power converters for experiments that have to fly on board space missions (satellite, launchers, etc.) have very stringent requirements due to its use in a very harsh environment. The selection of a suitable topology is therefore not only based on standard requirements but additional more strict ones have also to be fulfilled. This work shows the design procedure followed to build the Power Converter Module (PCM) for the Polarimetric and Helioseismic Imager (SO/PHI), experiment on board the Solar Orbiter Satellite. The selected topology has been a Push-Pull, for a power level of approximately 35 W and with seven output voltages. Galvanic isolation is needed from primary to secondary, but no…

research product

Isolated two-stage passive PFC rectifier for the Radioisotope Stirling Generator

This paper describes an isolated, passive power factor correction rectifier devised for low-voltage, large-inductance, single-phase alternator, like the one used in the Radioisotope Stirling Generator. The power converter splits into two independent stages, the front-end rectifier corrects the power factor by adding a series capacitor in the AC line. Further, the rectifier, thanks to the alternator inductance, behaves as a constant-current source that powers a current-fed, zero voltage and zero current switching push-pull stage. This approach takes advantage of all parasitic elements to increase power density while keeping simple and reliable. Full description and analysis is given as well …

research product

Circuit proposals for high-voltage latching current limiters

This work discusses some ideas to adapt existing low voltage Latching Current Limiter (LCL) circuits to high voltage operation to provide a basis for future designs. Component selection, driver and ancillary power supply are key issues discussed which eventually provides a high-voltage LCL proposal. Experimental validation of two different prototypes (380Vdc and 1kVdc) is included as well as some digital techniques to enhance LCL capabilities.

research product

High-Efficiency Regulation Method for a Zero-Current and Zero-Voltage Current-Fed Push–Pull Converter

A new high-efficiency regulation method for a zero-current and zero-voltage current-fed push-pull converter is presented. The method proposed is based on the use of a controlled transformer as a post-regulator, which adds or subtracts an additional voltage to the output filter of the converter. An auxiliary regulator, which only handles a percentage of the output power, controls this transformer, and therefore, results in much higher efficiency than a normal preregulator would have. The novelty of the presented converter is that regulation is achieved without affecting the zero-voltage and zero-current switching in any working conditions. Small- and large-signal models of the converter have…

research product

Design of a power conditioning unit for a Stirling generator in space applications

The Free-Piston Stirling Generator (FPSG) is a thermal to electrical energy conversion system, based upon the thermal engine of the same name. Intensive research concerning the feasibility of the engine for its application in deep space and planetary missions has been conducted, primarily due to the potential increase in efficiency (−30%) over the currently used Radio-isotope Generators (RTGs). On the other hand, less attention has been paid to the power conditioning requirements and alternatives. The present work has investigated on the dynamics governing the FPSGs in order to assess the design requirements for the subsequent power-conditioning unit (PCU). Thereafter, two alternatives of A…

research product

The Sequential Switching Shunt Maximum Power Regulator and its Application in the Electric Propulsion System of a Spacecraft

This paper describes a baseline solution of a Power Conditioning and Distribution Unit (PCDU) for Electrical Propulsion (EP) systems. The solution adopted uses two high efficiency, low-mass power regulators; a solar array regulator (SAR) based on the classical Sequential Switching Shunt Regulator with Maximum Power Point Tracking (MPPT) capability followed by a step-up converter to achieve the desired regulated bus voltage. This paper focuses on the first part of the PCDU, the Sequential Switching Shunt Maximum Power Regulator (S3MPR). This electrical architecture has been adapted and recently proposed for the Electric Propulsion power system of the European and Japanese Mercury Mission (Be…

research product

A new bi-faced log periodic printed antenna

In this paper, a new design of a broadband planar printed antenna based on the academic log periodic antenna is presented. The antenna consists of a series of printed dipoles, distributed on both faces of the substrate. Some configurations are explored, with a different number of printed dipoles. These are designed, simulated, fabricated, and measured. The calculated and measured return losses and radiation patterns are presented. The utility of the proposed antenna associated with its frequency bandwidth is better than 80%. The measured absolute gain is 6.5 dBi, and the front-to-back ratio is around 8 dB. The presented antenna should find wide applications in wireless communication systems…

research product

Evaluation of Gallium Nitride Transistors in Electronic Power Conditioners for TWTAs

The aim of this paper is to evaluate the benefits of replacing Si Mosfets transistors with enhancement mode GaN transistors in a Half-Bridge Zero Voltage and Zero Current Switching Power Switching Converter (ZVZCPS). This converter is usually used as power supply of the travelling-wave tube amplifiers (TWTAs) in aerospace applications. In this paper, firstly the converter is theoretically analyzed, obtaining its operation, losses and efficiency equations, these equations are used to obtain optimizations maps based on the main system parameters. In this way, the ideal design parameters can be visually obtained. These optimization maps are the key to quantify the potential benefits of GaN tra…

research product

Real time estimation of photovoltaic modules characteristics and its application to maximum power point operation

In this paper, an approximate curve fitting method for photovoltaic modules is presented. The operation is based on solving a simple solar cell electrical model by a microcontroller in real time. Only four voltage and current coordinates are needed to obtain the solar module parameters and set its operation at maximum power in any conditions of illumination and temperature. Despite its simplicity, this method is suitable for low cost real time applications, as control loop reference generator in photovoltaic maximum power point circuits. The theory that supports the estimator together with simulations and experimental results are presented.

research product

New Power Conditioning System for Battery-free Satellite Buses with Maximum Power Point Tracking

The purpose of this paper is describe a new conception of Power Conditioning Unit (PCU) developed to fulfill the requirements of BepiColombo Electronic Propulsion module. This load bus has very tough specification especially regarding transient response during total load switch-off ("beam out") which has to be less than 2% of the bus voltage. The conception we propose, is the new Sequential Switching Shunt Maximum Power Regulator (S3MPR) consisting in a S3R, to keep the SA voltage at its Maximum Power Point (MPP) followed by a Boost regulator to produce a constant 100V to supply the Electronic Propulsion (EP). This concept may also be of interest for other future missions involving high pow…

research product

Bidirectional High-Efficiency Nonisolated Step-Up Battery Regulator

The design and results of a high-efficiency high-power (5 kW) nonisolated bidirectional dc-dc converter is presented. High stability due to minimum phase behavior is an additional benefit of the topology. The converter is a new boost with output filter where input and output inductors are coupled. This converter is useful with any system that needs to charge and discharge backup batteries and can be applied in space, automotive, and telecom power systems.

research product

SIC based solid state protections switches for space applications

Development and technology maturation of Silicon Carbide (SiC) power transistors over the last 15 years has motivated its study in aerospace systems. When compared with Si devices, superior voltage blocking capacity and the capability of operation at higher temperatures, give important advantages in space power electronics applications, similar to what happens in terrestrial electronics. This paper discusses the use of SiC power transistors for Solid State Power Switches especially addressed to the space segment. Two applications will be covered, the first is the Solid State Shunt Switch, widely used in high power Direct Energy Transfer (DET) photovoltaic power regulators and the second is …

research product

Hydrogen back-up power system with photovoltaic direct energy transfer regulation and interleaved boost for space applicattions

This work details a power conditioning unit for photovoltaic/hydrogen based energy systems in space applications. The power conversion techniques applied are similar to the ones used on photovoltaic/battery space power systems. A direct energy transfer photovoltaic regulator is devised for feeding two outputs; the first output corresponds to the main unregulated battery bus and the second output sets a power path to feed an electrolyser. A modular fuel cell converter completes the system and operates when photovoltaic energy is not available or load demand exceeds the generated photovoltaic power, providing electrical power from a fuel cell. An ancillary battery, located in the main bus, di…

research product

SiC MOSFET vs SiC/Si Cascode short circuit robustness benchmark

Abstract Nowadays, MOSFET SiC semiconductors short circuit capability is a key issue. SiC/Si Cascodes are compound semiconductors that, in some aspects, show a similar MOSFET behaviour. No interlayer dielectric insulation suggests, in theory, Cascode JFETs as more robust devices. The purpose of this paper is to compare the drift and degradation of two commercial devices static parameters by exposing them to different levels of repetitive 1.5 μs short-circuit campaigns at 85% of its breakdown voltage. Short-circuit time has been set experimentally, and longer times result in catastrophic failure of MOSFET devices due to over self-heating. For this purpose, pre- and post-test short circuit ch…

research product

Benefits and Drawbacks of A High Frequency Gan Zvzcps Converter

This paper presents the benefits and drawbacks of replacing the traditional Si Mosfets transistors with enhancement mode GaN transistors in a Half-Bridge Zero Voltage and Zero Current Switching Power Switching (ZVZCPS) converter. This type of converters is usually used as Electronic Power Converters (EPC) for telecommunication satellites travelling-wave tube amplifiers (TWTAs). In this study, firstly the converter is theoretically analysed, obtaining its operation, losses and efficiency equations. From these equations, optimizations maps based on the main system parameters are obtained. These optimization maps are the key to quantify the potential benefits of GaN transistors in this type of…

research product

Phase Margin Degradation of a Peak Current Controlled Converter at Reduced Duty Cycle

An inner current loop is frequently used in many switching power supplies to achieve higher stability and a good current sharing. Nevertheless, some problems derived from its practical implementation can be encountered. One problem is related to the need of filtering of the sensed current and was discovered by the authors in the implementation of a 500 W converter, when peak current control was applied by sensing the switch current. This paper will demonstrate mathematically that an RC filter not only filters out the noise but also can cause a degradation of the phase margin, especially, if the needed duty cycle is close to zero. The main reason for it is the severe distortion of the curren…

research product

Broadband printed dipole with integrated via-hole balun for WiMAX applications

A broadband balanced printed dipole antenna for WiMAX applications (2.5/3.6 GHz) is presented. An integrated via-hole balun is used to feed the antenna and a Yagi-like scheme is proposed to improve the gain. The design has been optimized by means of parametric FDTD simulations. The antenna was fabricated and measured, giving a bandwidth higher than 50% and a gain higher than 4 dBi. © 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:52–55, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25671

research product